ESCI 386 — Scientific Programming,
Analysis and Visualization with
Python

Numerical Operators

+ addition
— subtraction
* multiplication

/ division

Numerical Operators (cont.)

 // truncating division
16.3//5.2=>3.0

e ** power

* % modulo (returns the remainder)
5%3=>2
52%3=>2.2

Comparison Operators

< less than

> greater than

== equal to

= not equal to

>= greater than or equal to

<= less than or equal to

Augmented Assignment Operators

* The augmented assignment operators are
shorthand operators and take the form x +=,
which is the same as x=x +.

* This works not only with addition (+), but also
with subtraction, multiplication, division,
truncated division, and powers.

Augmented Assighment Examples

>>>x=5

>>> X += 2

>>> X

7

>>>x *¥=8

>>> X

56

>>>x /=9.0

>>> X
6.222222222222222
>>> K *¥*=3

>>> X
240.89986282578877

Boolean Operators

* The three Boolean operators in Python are or, and,
and not.

>>> x, y, z = True, False, True

>>> x or
or Y >>> x and z

True
>>> X Or Z True
T >>> y and z
rue
S>> False
! y or z >>> not x
rue
S>> 4 False
n
x4 M >>> not y
False
True
>>> not z

False

Mathematical Functions

* Python has a limited number of built-in
mathematical functions:
— abs(x) absolute value of x
— divmod(x,y) returns a tuple with (x // y, x % y)
— pow(x,y) same as x**y

— round(x, [m]) rounds x to nearest integer value,
unless optional integer m is given, in which case it
round to nearest multiple of 10™™.

Built-in Math Functions Examples

>>> round(-2.4)

-2.0

>>> round(-2.6)

-3.0

>>> round(-2.6473, 2)
-2.65

>>> divmod(12, 8)

(1, 4)

The math Module

* More advanced mathematical functions are
contained in the math module, which must be
imported before use, either as

import math
— Or

import math as ma

The numpy Module

e The NumPy module contains many of the
same mathematical functions as the math

module, and is the preferred module to use
for math.

* NumPy must be imported before use, either
as

Import numpy
— Or

Import numpy as np

Constants in math Module

* pi returns the value of pi

e e returns the value of e

Functions in the math Module

* pow(x,y) same as x**y.

— pow(1.0,x) and pow(x, 0.0) always return 1.0, even
if x is zero or NaN.

e sqrt(x) returns the square root of x.

Trig Functions in the numpy Module

e arccos(x) arc cosine * degrees(x)

* arccosh(x) inverse cosh — converts x to degrees from
: : radians

e arcsin(x) arc sin

e arcsinh(x) inverse sinh " TRCIREEY

— converts x to radians from

e arctan(x) arc tangent degrees
e arctan2(y,x) * sin(x) sin of x
— arc tangent of y/x. * sinh(x) hyperbolic sine
e arctanh(x) inverse tanh e tan(x) tangent of x
* cos(x) cosine of x * tanh(x) hyperbolic
* cosh(x) hyperbolic cosine tangent

Note: All angles are in radians unless otherwise specified!

Exponents and Logs in the math Module

exp(x) returns e* * loglp(x) returns 1+Inx.
expm1(x) returns e*-1. — This is more accurate
— This is more accurate e leged]s= skl
than exp(x)-1 for small values of x.
values of x. * logl10(x) returns the
log(x) returns Inx. base 10 log of x

log(x, n) returns log,x. — preferred over log(x,10).

Numeric Functions in the numpy Module

ceil(x) the smallest integer >= to x.
copysign(x,y) returns x with the same sign as y
floor(x) the largest integer >= x

fabs(x) absolute value

trunc(x) truncates x to integer

Modulo Arithmatic in numpy Module

 fmod(x,y) like x % y

— Use fmod(x,y) if either x or y are floating point
values

— Use x % y if both x and y are integers.

* modf(x) breaks x into integer and fractional
parts

— np.modf(89.4357) => (0.4356999999999971,
89.0)

Special Functions in numpy Module

erf(x) error function

erfc(x) complementary error function
factorial(x) returns x!

gamma(x) gamma function
lgamma(x) returns log(gamma(x))

hypot(x,y) length of hypotenuse of right
triangle with sides x and y.

Functions to Check for Infinity/NaN in
the numpy Module

* isinf(x) returns True if x is positive or negative
infinity.

* isnan(x) returns True if x is not a number
(NaN).

Loading Modules

e All of methods and attributes of a module can be
loaded by simply using the import command.

* We then access the functions and constants by
prefacing them with numpy.

>>> import numpy
>>> numpy.cos(0.5)
0.87758256189037276

Aliasing Modules

 We can use an alias when importing a module.

— Avoids having to repeatedly typing long module
names

>>> Import numpy as np
>>> np.cos(0.5)
0.87758256189037276

Importing Individual Functions from
Modules

We can import individual functions or
constants from modules.
— They can also be aliased on import

>>> from numpy import cos

>>> c0s(0.5) i "
Note that numpy.cos() is
0.87758256189037276 not the same a math.cos()!

>>> from math import cos as macos

>>> macos(0.5)
0.8775825618903728

Don’t Import All Functions Using *!

 We can import every function and constant
and then not have to preface them with the
module name

* However, you should avoid this!

e Can cause confusion if multiple modules have
functions with the same name.

Example of What Not to Do!

>>> from numpy import *\

>>> from math import *< Don’t do this!
>>> c0s(0.5)

0.8775825618903728

Which cos() function is this? Is it from
numpy or from math? It’s from whichever
one was loaded last, but it can get
confusing, so avoid importing using the *!

