ESCI 386 — Scientific Programming,
Analysis and Visualization with
Python



Interactive Input

* |Input from the terminal is handled using the
raw_input() function

>>>a = raw_input('Enter data: ')
Enter data: 45
>>> 3

|45l



Interactive Input (cont.)

 The raw_input() function treats all input as a string.

* |f we wanted to bring in numerical data we have to
convert it using either the float or int functions.

>>> 3 = raw_input('Enter data: ')
Enter data: 34.7

>>> g = float(a)

>>> 3

34.7



Interactive Input (cont.)

e We could do the conversion all on one line

>>> 3 = float(raw_input('Enter data: '))



Input of Multiple Values

e To input multiple values on one line we have to
be creative, using the split method for strings.

>>> in_string = raw_input('Enter three numbers: ')
Enter three numbers: 45.6, -34.2, 9

>>> X, V, z = in_string.split(’,')
>>> X, Y,
('45.6', ' -34.2", ' 9')



Code Blocks

e A code block consists of several lines of code that
are uniformly indented.

 Code blocks can be used with if, else, elif, for, and
while statements, as well as others.

 For this class:

— My preference is 4 spaces for indents, but you can use
any number between 2 and 4

— Be uniform! Pick an indent number and stick with it.



Conditional Statements

 Conditional statements include the if, then, and
elif constructs.

* The form for a simple if statement is

if condition:
any statements to be executed
if the condition is true
go here, all indented
by the same amount



Conditional Statements with else

 |f there are also statements to be executed if the condition is not
true, then the else statement is used as follows:

if condition:
any statements to be executed
if the condition is true
go here, all indented
by the same amount
else:
any statement to be executed
if the condition is false
go here, again all indented
by the same amount



Multiple Conditions

If there are multiple conditions to consider, then the elif statement is used:

if condition1:
any statements to be executed
if condition1 is true
go here, all indented
by the same amount

elif condition2:
any statements to be executed
if condition2 is true
go here, all indented
by the same amount

elif condition3:
any statements to be executed
if condition3 is true
go here, all indented
by the same amount

else:
any statement to be executed
if none of the previous conditions are true
go here, again all indented
by the same amount



Single-line Conditional Statements

Python does contain a single line form of an if-else statement. This has
the form

expressionl if condition else expression2

In this construct, expressionl is executed if condition is True, while
expression2 is executed if condition is False.

>>>Xx=5

>>> print('Yes') if x <=10 else 'No’
Yes

>>>x =12

>>> print('Yes') if x <=10 else 'No’
No



Loops

* Looping in Python is accomplished using
either the for or the while statements

* The most common way to loop is to use the
for statement.

* The for statement requires an iterable object
such as a list, a tuple, a range, an array, or
even a string.



for Loop

* The basic construct for a for loop is
for elem in iterable_object:
statements to be executed
within loop.

* For each pass through the loop the next item in
the iterable object is passed to the variable elem.

* elem can be any valid variable name.
— |t should be a new variable, not one already used.



>>>for nin[1, 3, 'hi', False]:

print(n)




>>> for n in range(-5,30,5):
print(n)




>>> for nin 'Hello':
print(n)




for Loop Example

>>>b =[(1, 4, 3), (-3, 5, 2), (7, 1, -3)]
>>>for x,y, zin b:

S=X+y+2Z

print(x, vy, z, s)

(1, 4, 3, 8)
(_31 5/ 2; 4)
(71 1; _31 5)



Using enumerate()

 The enumerate() function converts an iterable object into an
enumerator object

e This allows the index of the elements to be obtained.

>>> 3 =[1, 3, 'hi', False]
>>> for i, n in enumerate(a):
print(i, n)

(0, 1)

(1, 3)

(2, 'hi')
(3, False)



while Loops

* The while loop construct will execute the
statements within a loop as long as a
condition is met. It has the form:

while condition:

statements to be executed

while the condition remains True



>>>a =11, 3, 4,5, 'hi', False]

>>>i=0

>>> while a[i] 1= "hi'":
print(a[i])

i+=1




Skipping to Top of Loop with continue

* The continue statement can be used within a loop to
skip to the top of the loop.

a=1[1,3,5,3,-8, 'hi', -14, 33]
fornina:
if n=="hi":
continue

print(n)

w U1 W

-14
33



a=1[1,3,5,3,-8, 'hi', -14, 33]
fornin a:
if n =="hi";

break
print(n)




Verifying Input with while Loop

A while loop can be used to ensure that interactive
input meets certain bounds.

import numpy as np
X =-99
while x < O:
X = raw_input('Enter non-negative number: ')

x = float(x) # converts input to floating point
print('y ="', np.sgrt(x))

Enter non-negative number: -6
Enter non-negative number: -3
Enter non-negative number: 5
('y=",2.2360679774997898)



