
ESCI 386 – Scientific Programming,
Analysis and Visualization with

Python

Lesson 5 – Program Control

1

Interactive Input

2

>>> a = raw_input('Enter data: ')
Enter data: 45
>>> a
'45'

• Input from the terminal is handled using the
raw_input() function

Interactive Input (cont.)

3

>>> a = raw_input('Enter data: ')
Enter data: 34.7
>>> a = float(a)
>>> a
34.7

• The raw_input() function treats all input as a string.

• If we wanted to bring in numerical data we have to
convert it using either the float or int functions.

Interactive Input (cont.)

4

>>> a = float(raw_input('Enter data: '))

• We could do the conversion all on one line

Input of Multiple Values

5

>>> in_string = raw_input('Enter three numbers: ')
Enter three numbers: 45.6, -34.2, 9
>>> x, y, z = in_string.split(',')
>>> x, y, z
('45.6', ' -34.2', ' 9')

• To input multiple values on one line we have to
be creative, using the split method for strings.

Code Blocks

• A code block consists of several lines of code that
are uniformly indented.

• Code blocks can be used with if, else, elif, for, and
while statements, as well as others.

• For this class:
– My preference is 4 spaces for indents, but you can use

any number between 2 and 4
– Be uniform! Pick an indent number and stick with it.

6

Conditional Statements

• Conditional statements include the if, then, and
elif constructs.

• The form for a simple if statement is

 if condition:

 any statements to be executed

 if the condition is true

 go here, all indented

 by the same amount

7

Conditional Statements with else

• If there are also statements to be executed if the condition is not
true, then the else statement is used as follows:

 if condition:
 any statements to be executed
 if the condition is true
 go here, all indented
 by the same amount
 else:
 any statement to be executed
 if the condition is false
 go here, again all indented
 by the same amount

8

Multiple Conditions

• If there are multiple conditions to consider, then the elif statement is used:

 if condition1:
 any statements to be executed
 if condition1 is true
 go here, all indented
 by the same amount
 elif condition2:
 any statements to be executed
 if condition2 is true
 go here, all indented
 by the same amount
 elif condition3:
 any statements to be executed
 if condition3 is true
 go here, all indented
 by the same amount
 else:
 any statement to be executed
 if none of the previous conditions are true
 go here, again all indented
 by the same amount

9

Single-line Conditional Statements

10

>>> x = 5
>>> print('Yes') if x <=10 else 'No'
Yes
>>> x = 12
>>> print('Yes') if x <=10 else 'No'
No

• Python does contain a single line form of an if-else statement. This has
the form

 expression1 if condition else expression2

• In this construct, expression1 is executed if condition is True, while

expression2 is executed if condition is False.

Loops

• Looping in Python is accomplished using
either the for or the while statements

• The most common way to loop is to use the
for statement.

• The for statement requires an iterable object
such as a list, a tuple, a range, an array, or
even a string.

11

for Loop

• The basic construct for a for loop is
 for elem in iterable_object:
 statements to be executed
 within loop.

• For each pass through the loop the next item in

the iterable object is passed to the variable elem.

• elem can be any valid variable name.
– It should be a new variable, not one already used.

12

for Loop Example

>>> for n in [1, 3, 'hi', False]:

 print(n)

1

3

hi

False

13

for Loop Example

>>> for n in range(-5,30,5):
 print(n)

-5
0
5
10
15
20
25

14

for Loop Example

>>> for n in 'Hello':

 print(n)

H

e

l

l

o

15

for Loop Example

>>> b = [(1, 4, 3), (-3, 5, 2), (7, 1, -3)]

>>> for x, y, z in b:

 s = x + y + z

 print(x, y, z, s)

(1, 4, 3, 8)

(-3, 5, 2, 4)

(7, 1, -3, 5)

16

Using enumerate()

17

>>> a = [1, 3, 'hi', False]
>>> for i, n in enumerate(a):
 print(i, n)

(0, 1)
(1, 3)
(2, 'hi')
(3, False)

• The enumerate() function converts an iterable object into an
enumerator object

• This allows the index of the elements to be obtained.

while Loops

• The while loop construct will execute the
statements within a loop as long as a
condition is met. It has the form:

 while condition:

 statements to be executed

 while the condition remains True

18

while Loop Example

>>> a = [1, 3, 4, 5, 'hi', False]
>>> i = 0
>>> while a[i] != 'hi':
 print(a[i])
 i += 1

1
3
4
5

19

Skipping to Top of Loop with continue

• The continue statement can be used within a loop to
skip to the top of the loop.

20

a = [1, 3, 5, 3, -8, 'hi', -14, 33]

for n in a:

 if n == 'hi':

 continue

 print(n)

1

3

5

3

-8

-14

33

Breaking out of a Loop

• The break statement can be used to exit a loop
prematurely.

21

a = [1, 3, 5, 3, -8, 'hi', -14, 33]
for n in a:
 if n == 'hi':
 break
 print(n)

1
3
5
3
-8

Verifying Input with while Loop

• A while loop can be used to ensure that interactive
input meets certain bounds.

22

import numpy as np

x = -99

while x < 0:

 x = raw_input('Enter non-negative number: ')

 x = float(x) # converts input to floating point

print('y = ', np.sqrt(x))

Enter non-negative number: -6

Enter non-negative number: -3

Enter non-negative number: 5

('y = ', 2.2360679774997898)

