
ESCI 386 – Scientific Programming, 
Analysis and Visualization with 

Python 

Lesson 17 - Fourier Transforms 

1 



Spectral Analysis 

• Most any signal can be decomposed into a 
sum of sine and cosine waves of various 
amplitudes and wavelengths. 

 

2 



Fourier Coefficients 

• For each frequency of wave contained in the 
signal there is a complex-valued Fourier 
coefficient. 
 

• The real part of the coefficient contains 
information about the amplitude of the cosine 
waves 
 

• The imaginary part of the coefficient contains 
information about the amplitude of the sine 
waves 

3 



Discrete Fourier Transform (DFT) 

• The   discrete Fourier transform pair 

• N is number of data points 

 

4 

 
1

0

( ) ( )exp 2
N

m

f n F m i mn N






 
1

0

1
( ) ( )exp 2

N

n

F m f n i mn N
N






  Forward transform 

Backward or 
inverse transform 



Discrete Fourier Transforms 

• f (n) is value of function f at grid point n. 

 

• F(m) is the spectral coefficient for the mth 
wave component. 

 

5 

 
1

0

( ) ( )exp 2
N

m

f n F m i mn N






 
1

0

1
( ) ( )exp 2

N

n

F m f n i mn N
N






 



Discrete Fourier Transforms 

• f (n) may be real or complex-valued. 

 

• F(m) is always complex-valued. 

 

6 

 
1

0

( ) ( )exp 2
N

m

f n F m i mn N






 
1

0

1
( ) ( )exp 2

N

n

F m f n i mn N
N






 



DFT  
• There will be as many Fourier coefficients (waves) 

as there are grid points. 

 

• The natural frequencies/wave numbers 
associated with the Fourier coefficients are 

7 

 

; 0,1,2, ,   2

1
; 2 1, 2 2, 2 3, ,   2

m

s

m

s

m
m N

N

N m
m N N N N N

N







 

 
     

for negative frequencies 

for positive frequencies 



The Frequencies/Wave Numbers 

• If the input function f(n) is entirely real then 
the negative frequencies are completely 
redundant, giving no additional information. 

 

• The highest natural frequency (wave number) 
that can be represented in a digital signal is 
called the Nyquist frequency, and is given as 
1/2  where  is the sampling interval/period. 

 

 

 
8 



The zeroth Coefficient 

• The zeroth Fourier coefficient is the average 
value of the signal over the interval. 

 

 

 

 

 

9 



Show Visualizations 

 

10 



Power Spectrum 

• The Fourier coefficients, F(m), are complex 
numbers, containing a real part and an 
imaginary part. 

 

• The real part corresponds to the cosine waves 
that make up the function (the even part of 
the original function), and the negative of the 
imaginary terms correspond to the sine waves 
(the odd part of the original function). 

11 



Power Spectrum 

• For a sinusoid that has an integer number of 
cycles within the N data points, the amplitude of 
the sine or cosine wave is twice its Fourier 
coefficient. 
– So, a pure cosine wave of amplitude one would have a 

single real Fourier coefficient at its frequency, and the 
value of that coefficient would be 0.5. 
 

• The magnitude squared of the Fourier 
coefficients ,  |F(m)|2 , is called the power. 
– A plot of the power vs. frequency is referred to as the 

power spectrum. 

 
12 



Power Spectra for Square Signal 

13 



Power Spectra for Gaussian Signal 

14 



The numpy.fft Module 

15 

Function Purpose Remarks 

fft(s) Computes the forward DFT and 

returns the coefficients F 

The returned array is a complex array. 

ifft(F) Computes the inverse DFT and 

returns the signal s 

fftfreq(n,d) Computes the natural 

frequencies/wavenumbers.  d is 

an optional sample spacing 

(default is 1). 

The zero frequency is in the first 

position of the array, followed by the 

positive frequencies in ascending 

order, and then the negative 

frequencies in descending order 

fftshift(F) Shifts the zero frequency to the 

center of the array. 

This can be used on either the 

frequencies or the spectral coefficients 

to put the zero frequency in the center. 



The numpy.fft Module (cont.) 

• There are also functions for taking FFTs in two 
or more dimensions, and for taking FFTs of 
purely real signals and returning only the 
positive coefficients.  See documentation for 
details. 

 

• We normally import this as 

 from numpy import fft 

16 



The numpy.fft.fft() Function 

• The fft.fft() function accepts either a real 
or a complex array as an input argument, and 
returns a complex array of the same size that 
contains the Fourier coefficients. 

 

• For the returned complex array: 
– The real part contains the coefficients for the cosine 

terms. 

– The imaginary part contains the negative of the 
coefficients for the sine terms. 

17 



The fft.fft() Function (cont.) 

• IMPORTANT NOTICE!!!  There are different 
definitions for how a DFT should be taken. 

 

18 



The fft.fft() Function (cont.) 

• NumPy actually uses these equations! 

 

• This means that NumPy’s Fourier coefficients 
will be N times larger than expected! 

19 

 
1

0

1
( ) ( )exp 2

N

m

f n F m i mn N
N






 

 
1

0

( ) ( )exp 2
N

n

F m f n i mn N




 



The fft.fftfreq() Function 

• The natural frequencies associated with the 
spectral coefficients are calculated using the 
fft.fft() function. 

 

• The zeroth frequency is first, followed by the 
positive frequencies in ascending order, and 
then the negative frequencies in descending 
order. 

20 



FFT Example Program 
from numpy import fft 

import numpy as np 

import matplotlib.pyplot as plt 

n = 1000    # Number of data points 

dx = 5.0    # Sampling period (in meters) 

x = dx*np.arange(0,n)   # x coordinates 

w1 = 100.0  # wavelength (meters) 

w2 = 20.0   # wavelength (meters) 

fx = np.sin(2*np.pi*x/w1) + 2*np.cos(2*np.pi*x/w2) # signal 

Fk = fft.fft(fx)/n    # Fourier coefficients (divided by n) 

nu = fft.fftfreq(n,dx)  # Natural frequencies 

Fk = fft.fftshift(Fk)   # Shift zero freq to center 

nu = fft.fftshift(nu)   # Shift zero freq to center 

f, ax = plt.subplots(3,1,sharex=True) 

ax[0].plot(nu, np.real(Fk))         # Plot Cosine terms 

ax[0].set_ylabel(r'$Re[F_k]$', size = 'x-large') 

ax[1].plot(nu, np.imag(Fk))         # Plot Sine terms 

ax[1].set_ylabel(r'$Im[F_k]$', size = 'x-large') 

ax[2].plot(nu, np.absolute(Fk)**2)  # Plot spectral power 

ax[2].set_ylabel(r'$\vert F_k \vert ^2$', size = 'x-large') 

ax[2].set_xlabel(r'$\widetilde{\nu}$', size = 'x-large') 

plt.show() 

21 
File:  fft-example.py 



FFT Result 

22 



FFT Leakage 

• There are no limits on the number of data points when 
taking FFTs in NumPy. 
 

• The FFT algorithm is much more efficient if the number of 
data points is a power of 2 (128, 512, 1024, etc.). 
 

• The DFT assumes that the signal is periodic on the interval 
0 to N, where N is the total number of data points in the 
signal. 
 

• Care needs to be taken to ensure that all waves in the 
signal are periodic within the interval 0 to N, or a 
phenomenon known as leakage will occur. 

23 



Leakage Example 

• In prior example if wavelength of the sine wave is 
changed to 110 meters from 100 meters. 

24 

Leakage 



The fft.rfft() Function 

• Since for real input the negative frequencies 
are redundant, there is an fft.rfft() 
function that only computes the positive 
coefficients for a real input. 

 

• The helper routine fftfreq() only returns 
the frequencies for the complex FFT. 

25 



The fft.rfft() Function 

• To return the frequencies associated with 
fft.rfft() function for an input of n data 
points, use: 

26 

Case Use 

For n even f = fft.fftfreq(n) 

freq = np.abs(f[0:n/2+1]) 

For n odd f = fft.fftfreq(n) 

freq = f[0:n/2+1] 


