ESCI 386 – Scientific Programming, Analysis and Visualization with Python Lesson 18 - Linear Algebra

Matrix Operations

 In many instances, numpy arrays can be thought of as matrices.

 In the next slides we explore some matrix operations on numpy arrays

Determinants

 The determinant of an array is found by using the det() function from the scipy.linalg module.

```
>>> import scipy.linalg as slin
>>> a
array([[ 3, -5, 8],
       [-1, 2, 3],
       [-5, -6, 2]])
>>> slin.det(a)
259.0
```

Trace

• The trace of an array is found by using the trace() function from numpy.

```
>>> import numpy as np
>>> a
array([[ 3, -5, 8],
        [-1, 2, 3],
        [-5, -6, 2]])
>>> np.trace(a)
7
```

Trace (cont)

• Offset traces can also be computed.

```
>>> a
array([[ 3, -5, 8],
        [-1, 2, 3],
        [-5, -6, 2]])
>>> np.trace(a,-1)
-7
>>> np.trace(a,1)
-2
```

Inverses

 Inverse of a matrix is computed from scipy.linalg.inv() function.

```
>>> a
array([[ 3, -5, 8],
        [-1, 2, 3],
        [-5, -6, 2]])
>>> slin.inv(a)
array([[ 0.08494208, -0.14671815, -0.11969112],
        [-0.05019305, 0.17760618, -0.06563707],
        [ 0.06177606, 0.16602317, 0.003861 ]])
```

Inverses

 Transpose of a matrix is computed from numpy.transpose() function.

```
a
array([[ 3, -5, 8],
        [-1, 2, 3],
        [-5, -6, 2]])
>>> np.transpose(a)
array([[ 3, -1, -5],
        [-5, 2, -6],
        [ 8, 3, 2]])
```

NumPy Matrix Objects

NumPy also has matrix objects that are an extension of arrays.

• These matrix objects have built in methods for determinant and inverse.

NumPy Matrix Objects

```
a
matrix([[ 3, -5, 8],
       [-1, 2, 3],
        [-5, -6, 2]])
>>> a.T
matrix([[ 3, -1, -5],
        [-5, 2, -6],
        [8, 3, 2]])
>>> a.I
matrix([[ 0.08494208, -0.14671815, -0.11969112],
        [-0.05019305, 0.17760618, -0.06563707],
        [0.06177606, 0.16602317, 0.003861]])
```

Matrix Objects Support Matrix Multiplication

```
>>> a
matrix([[ 3, -5, 8],
        [-1, 2, 3],
        [-5, -6, 2]])
>>> b
matrix([[ 3],
        [4],
        [-1]])
>>> a*b
matrix([[-19],
        [ 2],
        [-41]])
```

Solving Systems of Equations

• A system of linear, algebraic equations can be written in matrix form.

$$\begin{array}{c} a_1 x + b_1 y + c_1 z = d_1 \\ a_2 x + b_2 y + c_2 z = d_2 \end{array} \longrightarrow \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} d_1 \\ d_2 \\ d_3 \end{pmatrix}$$

- The 3×3 matrix is called the coefficient matrix
- The right-hand side is a vector.

Methods/Functions for Solving Matrix Equations

- Solving matrix equations is computationally intensive.
- We will discuss several methods for solving these equations.
- These methods are all from the scipy.linalg module.

Methods/Functions for Solving Matrix Equations

• We will illustrate these methods for the simple system of equations:

$$4x-5y+8z = 4$$
$$2x-8y+7z = 0$$
$$-5x+8y = -5$$

scipy.linalg.solve()

 This method takes the coefficient matrix and the right-hand side vector as arguments and return a vector with the solutions.

>>> cm = np.array([[4, -5, 8], [2, -8, 7], [-5, 8, 0]])
>>> rhs = np.array([4,0,-5])
>>> soln = slin.solve(cm,rhs)
>>> soln
array([1.53112033, 0.33195021, -0.05809129])

Coefficient Matrix Must be Nonsingular!

 If the coefficient matrix is singular (has determinant of zero) then an error results.

```
>>> cm = np.array([[4, -5, 8], [8, -10, 16], [-5, 8, 0]])
>>> rhs = np.array([4,8,-5])
>>> soln = slin.solve(cm,rhs)
```

```
Traceback (most recent call last):

File "<pyshell#45>", line 1, in <module>

soln = slin.solve(cm,rhs)

File "C:\Python27\lib\site-packages\scipy\linalg\basic.py", line 68, in solve

raise LinAlgError("singular matrix")

LinAlgError: singular matrix
```

Very Large Systems of Equations

- Very large systems of equations are very computationally intensive to solve.
- There are several specialized methods to efficiently solve large systems of equation.
- We will discuss some of these.

LU Decomposition

- If the right-hand side vector changes, but the coefficient matrix doesn't change, then the coefficient matrix can be decomposed using LU decomposition.
- This LU decomposition can then be used to solve the system for any different right-hand side.
- This saves time because the decomposition is the single biggest drain on resources. So, by not having to redo it every time, we save computational time.

LU Decomposition

- To use LU decompositions:
 - First, use the slin.lu_factor() method on the coefficient matrix, and assign the result to a new variable.
 - Then, use the slin.lu_solve() function with the decomposition and the rhs as arguments.

```
>>> cm = np.array([[4, -5, 8], [2, -8, 7], [-5, 8, 0]])
```

```
>>> rhs = np.array([4,0,-5])
```

```
>>> soln = slin.solve(cm,rhs)
```

>>> soln

array([1.53112033, 0.33195021, -0.05809129])

LU Decomposition Example

```
>>> cm
array([[4, -5, 8],
   [2, -8, 7],
   [-5, 8, 0]])
>>> rhs
array([4, 0, -5])
>>> lu = slin.lu_factor(cm)
>>> soln = slin.lu solve(lu,rhs)
>>> soln
array([1.53112033, 0.33195021, -0.05809129])
```

LU Decomposition Example

 Once the LU decomposition is accomplished we can use any right-hand side we want without redoing the decomposition.

```
>>> soln = slin.lu_solve(lu,[4, -3, 9])
>>> soln
array([ 0.64315353, 1.52697095, 1.13278008])
>>> soln = slin.lu_solve(lu,[-2, -3, -12])
>>> soln
array([ 1.77593361, -0.39004149, -1.38174274])
```

Banded Matrices

- Many large matrices in the sciences and engineering are of a banded nature, meaning that their non-zero values are along diagonals.
- Methods for efficiently solving these type of matrices have been developed.
- Banded matrices also don't require as much memory to store, since many of the values are zero

Representing Banded Matrices

 The banded matrix on the left is represented as the non-square matrix shown on the right.

$$\begin{pmatrix} 1 & -5 & 3 & 0 & 0 & 0 & 0 & 0 \\ 3 & 2 & -3 & 5 & 0 & 0 & 0 & 0 \\ 0 & -2 & 1 & 5 & 9 & 0 & 0 & 0 \\ 0 & 0 & 9 & -1 & 5 & 4 & 0 & 0 \\ 0 & 0 & 0 & 2 & -3 & -2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 & 1 & -6 \\ 0 & 0 & 0 & 0 & 0 & -3 & 2 & 7 \\ 0 & 0 & 0 & 0 & 0 & 9 & 1 \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 0 & 3 & 5 & 9 & 4 & -2 & -6 \\ 0 & -5 & -3 & 5 & 5 & -3 & 1 & 7 \\ 1 & 2 & 1 & -1 & 2 & 0 & 2 & 1 \\ 3 & -2 & 9 & 0 & 2 & -3 & 9 & 0 \end{pmatrix}$$

Representing Banded Matrices

- The upper diagonals have leading zeros.
- Lower diagonals have trailing zeros.

Solving Banded Matrix Equations

- To solve a set of equations with a banded coefficient matrix we use the scipy.linalg.solve_banded() function.
- The format for this function is slin.solve_banded((l,u), cm, rhs)
- (I, u) is a tuple where I is the number of nonzero lower diagonals, and u is the number of nonzero upper diagonals.
- cm is the coefficient matrix in banded form, and rhs is the right-hand side vector.

In-class Exercise

Solve the set of matrix equations below using solve_banded().

$$\begin{pmatrix} 1 & -5 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 3 & 2 & -3 & 5 & 0 & 0 & 0 & 0 & 0 \\ 0 & -2 & 1 & 5 & 9 & 0 & 0 & 0 & 0 \\ 0 & 0 & 9 & -1 & 5 & 4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & -3 & -2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 & 1 & -6 & 0 \\ 0 & 0 & 0 & 0 & 0 & -3 & 2 & 7 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 9 & 1 & 0 \\ \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ -3 \\ 2 \\ 0 \\ f \\ g \\ h \end{pmatrix} = \begin{pmatrix} 5 \\ 3 \\ -3 \\ 2 \\ 0 \\ 7 \\ 8 \\ 1 \end{pmatrix}$$

In-class Results

- a = 200.639937
- b = -25.491352
- c = -107.698899
- d = -174.206761
- e = 102.750000
- f = 70.833333
- g = -3.500000
- h = 32.500000