ESCI 386 — Scientific Programming,
Analysis and Visualization with
Python

Matrix Operations

* |n many instances, numpy arrays can be
thought of as matrices.

* |n the next slides we explore some matrix
operations on humpy arrays

Determinants

* The determinant of an array is found by
using the det() function from the scipy.linalg
module.

>>> import scipy.linalg as slin
>>> a

array([[3, -5, 8],

-1, 2, 3],

(-5, -6, 2]])

>>> slin.det (a)

259.0

Trace

* The trace of an array is found by using the
trace() function from numpy.

>>> import numpy as np
>>> a

arraY([: 3/ -5, 8]/
:_11 2/ 3]/
(-5, -6, 2]])
>>> np.trace(a)

7

Trace (cont)

e Offset traces can also be computed.

>>> a

array([[3, -5, 8]
[-1, 2, 3]
[_51 _61 2])

>>> np.trace(a,-1)

-7

>>> np.trace(a,l)

-2

Inverses

* |nverse of a matrix is computed from
scipy.linalg.inv() function.

>>> a

arraY([[3/ -5, 8]/
[_11 2/ 3]/
[-5, -6, 2]])

>>> slin.inv (a)

array ([[0.08494208, -0.14671815, -0.11969112],
[-0.05019305, 0.17760618, -0.06563707],
[0.06177606, 0.16602317, 0.003861 11)

Inverses

* Transpose of a matrix is computed from
numpy.transpose() function.

a
array([[3, -5, 8],
[-1, 2, 31,
[-5, -6, 2]1])
>>> np.transpose (a)
array([[3, -1, -5],
[-5, 2, -6],
[8, 3, 2]1])

NumPy Matrix Objects

* NumPy also has matrix objects that are an
extension of arrays.

* These matrix objects have built in methods
for determinant and inverse.

NumPy Matrix Objects

a

matrix([[3, -5, 8],
[-1, 2, 3],
[-5, -6, 2]1])

>>> a.T

matrix([[3, -1, -5],
[-5, 2, -6],
[8, 3, 2]1])

>>> a.l

matrix ([[0.08494208, -0.14671815, -0.11969112],
[-0.05019305, 0.17760618, -0.06563707],
[0.06177606, 0.16602317, 0.003861 1]])

Matrix Objects Support Matrix

Multiplication

>>> a
matrix([[3, -5, 8],

-1, 2, 31,

-5, -6, 211)
>>> b
matrix ([[3],

[4],

[-111)
>>> a*b
matrix([[-19],

[2],

[-41]1])

Solving Systems of Equations

e A system of linear, algebraic equations can be
written in matrix form.

ax+hy+cz=d, fa, b c \(x) (d
a,x+b,y+c,z=d, == |a, b, c ||y|=]|d,
;X +b,y + ¢z =d, & b ¢)\z) (dy

e The 3x3 matrix is called the coefficient matrix
* The right-hand side is a vector.

Methods/Functions for Solving Matrix Equations

* Solving matrix equations is computationally
Intensive.

* We will discuss several methods for solving
these equations.

* These methods are all from the scipy.linalg
module.

Methods/Functions for Solving Matrix Equations

* We will illustrate these methods for the simple
system of equations:

4x -5y+8z=4
2X—8y+7z2=0
—5X+8y =-5

scipy.linalg.solve()

* This method takes the coefficient matrix and the
right-hand side vector as arguments and return a

vector with the so

>>>cm = np.array(
>>> rhs = np.array(

utions.

[4, -5, 8], [2, -8, 7], [-5, 8, 0]])

4,0,-5])

>>> soln = slin.solve(cm,rhs)

>>> soln

array([1.53112033, 0.33195021, -0.05809129])

Coefficient Matrix Must be Nonsingular!

* |If the coefficient matrix is singular (has
determinant of zero) then an error results.

>>>cm = np.array([[4, -5, 8], [8, -10, 16], [-5, 8, 0]])
>>> rhs = np.array([4,8,-5])
>>> soln = slin.solve(cm,rhs)

Traceback (most recent call last):
File "<pyshell#45>", line 1, in <module>
soln = slin.solve(cm,rhs)
File "C:\Python27\lib\site-packages\scipy\linalg\basic.py", line 68, in solve
raise LinAlgError("singular matrix")
LinAlgError: singular matrix

Very Large Systems of Equations

Very large systems of equations are very
computationally intensive to solve.

There are several specialized methods to
efficiently solve large systems of equation.

We will discuss some of these.

LU Decomposition

e |f the right-hand side vector changes, but the
coefficient matrix doesn’t change, then the coefficient
matrix can be decomposed using LU decomposition.

* This LU decomposition can then be used to solve the
system for any different right-hand side.

* This saves time because the decomposition is the
single biggest drain on resources. So, by not having to
redo it every time, we save computational time.

LU Decomposition

 To use LU decompositions:

— First, use the slin.lu_factor() method on the coefficient
matrix, and assign the result to a new variable.

— Then, use the slin.lu_solve() function with the
decomposition and the rhs as arguments.

>>>cm = np.array([[4, -5, 8], [2, -8, 7], [-5, 8, 0]])
>>>rhs = np.array([4,0,-5])

>>> soln = slin.solve(cm,rhs)

>>> soln

array([1.53112033, 0.33195021, -0.05809129])

LU Decomposition Example

>>>Ccm
array([[4, -5, 8],
[2, -8, 7],
[-5, 8, 0]])
>>> rhs
array([4, O, -5])
>>> |u = slin.lu_factor(cm)
>>> soln = slin.lu_solve(lu,rhs)
>>> s0ln
array([1.53112033, 0.33195021, -0.05809129])

LU Decomposition Example

* Once the LU decomposition is accomplished we
can use any right-hand side we want without
redoing the decomposition.

>>> soln = slin.lu_solve(lu,[4, -3, 9])

>>> s0In

array([0.64315353, 1.52697095, 1.13278008])
>>> soln = slin.lu_solve(lu,[-2, -3, -12])

>>> 50In

array([1.77593361, -0.39004149, -1.38174274])

Banded Matrices

e Many large matrices in the sciences and
engineering are of a banded nature, meaning that
their non-zero values are along diagonals.

* Methods for efficiently solving these type of
matrices have been developed.

 Banded matrices also don’t require as much
memory to store, since many of the values are
Zero

O O O O O O W K

Representing Banded Matrices

The banded matrix on the left is represented

as the non-square matrix shown on the right.

-5 3 0 0 0 0 O
2 -3 5 0 0 0 O
-2 1 5 9 0 0 O o 0 3 5 9 4 2
0O 9 15 4 0 O 0 5 3 5 5 3 1
0002—3—203121—1202
o 0 0 2 0 1 -6 3 2 9 0 2 3 9
o 0 0 0 3 2 7
O 0 0 0 0 9 1

—6

Representing Banded Matrices

 The upper diagonals have leading zeros.
* Lower diagonals have trailing zeros.

0 0 3 59 4 -2 —6

0[5 3 5 5 3 1 7
—

T 2 1 -1 2 0 2 1

3 2 9 0 2 3 9]0

Solving Banded Matrix Equations

To solve a set of equations with a banded coefficient
matrix we use the scipy.linalg.solve_banded() function.

The format for this function is
slin.solve_banded((l,u), cm, rhs)

(1, u) is a tuple where | is the number of nonzero lower
diagonals, and u is the number of nonzero upper
diagonals.

cm is the coefficient matrix in banded form, and rhs is the
right-hand side vector.

In-class Exercise

e Solve the set of matrix equations below using

().

solve _banded

-3 5 0 0 O

3 2

0
—2

1

2

-1 5 4
0 2

9
0

0
0

0

0
—6

-3
0

0 2
0 O

-3

0

0

In-class Results

a = 200.639937
b =-25.491352
c =-107.698899
d =-174.206761
e = 102.750000
f=70.833333

g = -3.500000

h = 32.500000

