
ESCI 386 – Scientific Programming, 
Analysis and Visualization with 

Python 

Lesson 18 - Linear Algebra 
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Matrix Operations 

• In many instances, numpy arrays can be 
thought of as matrices. 

 

• In the next slides we explore some matrix 
operations on numpy arrays 
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Determinants 

• The determinant of an array is found by 
using the det() function from the scipy.linalg 
module. 

>>> import scipy.linalg as slin 

>>> a 

array([[ 3, -5,  8], 

       [-1,  2,  3], 

       [-5, -6,  2]]) 

>>> slin.det(a) 

259.0 
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Trace 

• The trace of an array is found by using the 
trace() function from numpy. 

>>> import numpy as np 

>>> a 

array([[ 3, -5,  8], 

       [-1,  2,  3], 

       [-5, -6,  2]]) 

>>> np.trace(a) 

7 
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Trace (cont) 

• Offset traces can also be computed. 

>>> a 

array([[ 3, -5,  8], 

       [-1,  2,  3], 

       [-5, -6,  2]]) 

>>> np.trace(a,-1) 

-7 

>>> np.trace(a,1) 

-2 
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Inverses 

• Inverse of a matrix is computed from 
scipy.linalg.inv() function. 

>>> a 

array([[ 3, -5,  8], 

       [-1,  2,  3], 

       [-5, -6,  2]]) 

>>> slin.inv(a) 

array([[ 0.08494208, -0.14671815, -0.11969112], 

       [-0.05019305,  0.17760618, -0.06563707], 

       [ 0.06177606,  0.16602317,  0.003861  ]]) 
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Inverses 

• Transpose of a matrix is computed from 
numpy.transpose() function. 

a 

array([[ 3, -5,  8], 

       [-1,  2,  3], 

       [-5, -6,  2]]) 

>>> np.transpose(a) 

array([[ 3, -1, -5], 

       [-5,  2, -6], 

       [ 8,  3,  2]]) 
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NumPy Matrix Objects 

• NumPy also has matrix objects that are an 
extension of arrays. 

 

• These matrix objects have built in methods 
for determinant and inverse. 
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NumPy Matrix Objects 

a 

matrix([[ 3, -5,  8], 

        [-1,  2,  3], 

        [-5, -6,  2]]) 

>>> a.T 

matrix([[ 3, -1, -5], 

        [-5,  2, -6], 

        [ 8,  3,  2]]) 

>>> a.I 

matrix([[ 0.08494208, -0.14671815, -0.11969112], 

        [-0.05019305,  0.17760618, -0.06563707], 

        [ 0.06177606,  0.16602317,  0.003861  ]]) 
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Matrix Objects Support Matrix 
Multiplication 

>>> a 

matrix([[ 3, -5,  8], 

        [-1,  2,  3], 

        [-5, -6,  2]]) 

>>> b 

matrix([[ 3], 

        [ 4], 

        [-1]]) 

>>> a*b 

matrix([[-19], 

        [  2], 

        [-41]]) 
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Solving Systems of Equations 

• A system of linear, algebraic equations can be 
written in matrix form. 

 

 

 

 

• The 3×3 matrix is called the coefficient matrix 

• The right-hand side is a vector. 
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Methods/Functions for Solving Matrix Equations 

• Solving matrix equations is computationally 
intensive. 

• We will discuss several methods for solving 
these equations. 

• These methods are all from the scipy.linalg 
module. 
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Methods/Functions for Solving Matrix Equations 

• We will illustrate these methods for the simple 
system of equations: 
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4 5 8 4

2 8 7 0

5 8 5
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x y z
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scipy.linalg.solve() 

• This method takes the coefficient matrix and the 
right-hand side vector as arguments and return a 
vector with the solutions. 

>>> cm = np.array([[4, -5, 8], [2, -8, 7], [-5, 8, 0]]) 

>>> rhs = np.array([4,0,-5]) 

>>> soln = slin.solve(cm,rhs) 

>>> soln 

array([ 1.53112033,  0.33195021, -0.05809129]) 
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Coefficient Matrix Must be Nonsingular! 

• If the coefficient matrix is singular (has 
determinant of zero) then an error results. 

>>> cm = np.array([[4, -5, 8], [8, -10, 16], [-5, 8, 0]]) 
>>> rhs = np.array([4,8,-5]) 
>>> soln = slin.solve(cm,rhs) 
 
Traceback (most recent call last): 
  File "<pyshell#45>", line 1, in <module> 
    soln = slin.solve(cm,rhs) 
  File "C:\Python27\lib\site-packages\scipy\linalg\basic.py", line 68, in solve 
    raise LinAlgError("singular matrix") 
LinAlgError: singular matrix 
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Very Large Systems of Equations 

• Very large systems of equations are very 
computationally intensive to solve. 

 

• There are several specialized methods to 
efficiently solve large systems of equation. 

 

• We will discuss some of these. 
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LU Decomposition 

• If the right-hand side vector changes, but the 
coefficient matrix doesn’t change, then the coefficient 
matrix can be decomposed using LU decomposition.   

 

• This LU decomposition can then be used to solve the 
system for any different right-hand side. 

 

• This saves time because the decomposition is the 
single biggest drain on resources.  So, by not having to 
redo it every time, we save computational time. 
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LU Decomposition 

• To use LU decompositions: 

– First, use the slin.lu_factor() method on the coefficient 
matrix, and assign the result to a new variable. 

– Then, use the slin.lu_solve() function with the 
decomposition and the rhs as arguments. 

>>> cm = np.array([[4, -5, 8], [2, -8, 7], [-5, 8, 0]]) 

>>> rhs = np.array([4,0,-5]) 

>>> soln = slin.solve(cm,rhs) 

>>> soln 

array([ 1.53112033,  0.33195021, -0.05809129]) 
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LU Decomposition Example 

>>> cm 

array([[ 4, -5,  8], 

       [ 2, -8,  7], 

       [-5,  8,  0]]) 

>>> rhs 

array([ 4,  0, -5]) 

>>> lu = slin.lu_factor(cm) 

>>> soln = slin.lu_solve(lu,rhs) 

>>> soln 

array([ 1.53112033,  0.33195021, -0.05809129]) 
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LU Decomposition Example 

• Once the LU decomposition is accomplished we 
can use any right-hand side we want without 
redoing the decomposition. 

>>> soln = slin.lu_solve(lu,[4, -3, 9]) 

>>> soln 

array([ 0.64315353,  1.52697095,  1.13278008]) 

>>> soln = slin.lu_solve(lu,[-2, -3, -12]) 

>>> soln 

array([ 1.77593361, -0.39004149, -1.38174274]) 
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Banded Matrices 

• Many large matrices in the sciences and 
engineering are of a banded nature, meaning that 
their non-zero values are along diagonals. 
 

• Methods for efficiently solving these type of 
matrices have been developed. 
 

• Banded matrices also don’t require as much 
memory to store, since many of the values are 
zero 
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Representing Banded Matrices 

• The banded matrix on the left is represented 
as the non-square matrix shown on the right. 
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1 5 3 0 0 0 0 0

3 2 3 5 0 0 0 0

0 2 1 5 9 0 0 0 0 0 3 5 9 4 2 6

0 0 9 1 5 4 0 0 0 5 3 5 5 3 1 7

0 0 0 0 2 3 2 0 1 2 1 1 2 0 2 1

0 0 0 0 2 0 1 6 3 2 9 0 2 3 9 0

0 0 0 0 0 3 2 7

0 0 0 0 0 0 9 1

 
 

 
    
   

      
     
   

     
 
 
 
 



Representing Banded Matrices 

• The upper diagonals have leading zeros. 

• Lower diagonals have trailing zeros. 
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1 5 3 0 0 0 0 0

3 2 3 5 0 0 0 0

0 2 1 5 9 0 0 0 0 0 3 5 9 4 2 6

0 0 9 1 5 4 0 0 0 5 3 5 5 3 1 7

0 0 0 0 2 3 2 0 1 2 1 1 2 0 2 1

0 0 0 0 2 0 1 6 3 2 9 0 2 3 9 0

0 0 0 0 0 3 2 7

0 0 0 0 0 0 9 1

 
 

 
    
   

      
     
   

     
 
 
 
 



Solving Banded Matrix Equations 

• To solve a set of equations with a banded coefficient 
matrix we use the scipy.linalg.solve_banded() function. 
 

• The format for this function is 
  slin.solve_banded((l,u), cm, rhs) 

 
• (l, u) is a tuple where l is the number of nonzero lower 

diagonals, and u is the number of nonzero upper 
diagonals. 
 

• cm is the coefficient matrix in banded form, and rhs is the 
right-hand side vector. 
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In-class Exercise 
• Solve the set of matrix equations below using 

solve_banded(). 
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1 5 3 0 0 0 0 0 5

3 2 3 5 0 0 0 0 3

0 2 1 5 9 0 0 0 3

0 0 9 1 5 4 0 0 2

0 0 0 0 2 3 2 0 0

0 0 0 0 2 0 1 6 7

0 0 0 0 0 3 2 7 8

0 0 0 0 0 0 9 1 1

a

b

c

d
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In-class Results 

a = 200.639937 

b = -25.491352 

c = -107.698899 

d = -174.206761 

e = 102.750000 

f = 70.833333 

g = -3.500000 

h = 32.500000 
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