ESCI 386 - Scientific Programming, Analysis and Visualization with Python

Lesson 18 - Linear Algebra

Matrix Operations

- In many instances, numpy arrays can be thought of as matrices.
- In the next slides we explore some matrix operations on numpy arrays

Determinants

- The determinant of an array is found by using the $\operatorname{det}()$ function from the scipy.linalg module.
>>> import scipy.linalg as slin
>>> a
array ([[3, -5, 8],
$[-1,2,3]$,
$[-5,-6,2]])$
>>> slin. det(a)
259.0

Trace

- The trace of an array is found by using the trace() function from numpy.
>>> import numpy as np
>>> a
array([[3, -5, 8],
$\left[\begin{array}{ll}-1, & 2, \\ 3]\end{array}\right.$
$[-5,-6,2]])$
>>> np.trace (a)
7

Trace (cont)

- Offset traces can also be computed.
>>> a
array ([[3, -5, 8],
$\left[\begin{array}{ll}-1, & 2, \\ 3\end{array}\right]$,
$[-5,-6,2]])$
>>> np.trace (a,-1)
-7
>>> np.trace (a,1)
-2

Inverses

- Inverse of a matrix is computed from scipy.linalg.inv() function.

```
>>> a
array([[ 3, -5, 8],
    [-1, 2, 3],
    [-5, -6, 2]])
>>> slin.inv(a)
array([[ 0.08494208, -0.14671815, -0.11969112],
    [-0.05019305, 0.17760618, -0.06563707],
    [ 0.06177606, 0.16602317, 0.003861 ]])
```


Inverses

- Transpose of a matrix is computed from numpy.transpose() function.

```
a
array([[ 3, -5, 8],
    [-1, 2, 3],
    [-5, -6, 2]])
    >>> np.transpose(a)
    array([[ 3, -1, -5],
    [-5, 2, -6],
    [ 8, 3, 2]])
```


NumPy Matrix Objects

- NumPy also has matrix objects that are an extension of arrays.
- These matrix objects have built in methods for determinant and inverse.

NumPy Matrix Objects

```
a
matrix([[ 3, -5, 8],
    [-1, 2, 3],
    [-5, -6, 2]])
>>> a.T
matrix([[ 3, -1, -5],
    [-5, 2, -6],
    [ 8, 3, 2]])
>>> a.I
matrix([[ 0.08494208, -0.14671815, -0.11969112],
    [-0.05019305, 0.17760618, -0.06563707],
    [ 0.06177606, 0.16602317, 0.003861 ]])
```


Matrix Objects Support Matrix Multiplication

>>> a matrix ([$[3,-5,8]$,

$$
\left[\begin{array}{lll}
-1, & 2, & 3]
\end{array}\right.
$$

$$
\left[\begin{array}{lll}
-5, & -6, & 2]
\end{array}\right]
$$

>> b
matrix([$\left.{ }^{[}\right]$,
[4],
[-1]])
>>> a*b
matrix([[-19],
[2],
[-41]])

Solving Systems of Equations

- A system of linear, algebraic equations can be written in matrix form.

$$
\begin{aligned}
& a_{1} x+b_{1} y+c_{1} z=d_{1} \\
& a_{2} x+b_{2} y+c_{2} z=d_{2} \\
& a_{3} x+b_{3} y+c_{3} z=d_{3}
\end{aligned} \longleftrightarrow\left(\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right)
$$

- The 3×3 matrix is called the coefficient matrix
- The right-hand side is a vector.

Methods/Functions for Solving Matrix Equations

- Solving matrix equations is computationally intensive.
- We will discuss several methods for solving these equations.
- These methods are all from the scipy.linalg module.

Methods/Functions for Solving Matrix Equations

- We will illustrate these methods for the simple system of equations:

$$
\begin{aligned}
& 4 x-5 y+8 z=4 \\
& 2 x-8 y+7 z=0 \\
& -5 x+8 y=-5
\end{aligned}
$$

scipy.linalg.solve()

- This method takes the coefficient matrix and the right-hand side vector as arguments and return a vector with the solutions.
>>> cm = np.array([[4, -5, 8], [2, -8, 7], [-5, 8, 0]])
>>> rhs = np.array([4,0,-5])
>>> soln = slin.solve(cm,rhs)
>>> soln
array([1.53112033, 0.33195021, -0.05809129])

Coefficient Matrix Must be Nonsingular!

- If the coefficient matrix is singular (has determinant of zero) then an error results.

```
>>> cm = np.array([[4, -5, 8], [8, -10, 16], [-5, 8, 0]])
>>> rhs = np.array([4,8,-5])
>>> soln = slin.solve(cm,rhs)
Traceback (most recent call last):
    File "<pyshell#45>", line 1, in <module>
        soln = slin.solve(cm,rhs)
    File "C:\Python27\lib\site-packages\scipy\linalg\basic.py", line 68, in solve
        raise LinAlgError("singular matrix")
LinAlgError: singular matrix
```


Very Large Systems of Equations

- Very large systems of equations are very computationally intensive to solve.
- There are several specialized methods to efficiently solve large systems of equation.
- We will discuss some of these.

LU Decomposition

- If the right-hand side vector changes, but the coefficient matrix doesn't change, then the coefficient matrix can be decomposed using LU decomposition.
- This LU decomposition can then be used to solve the system for any different right-hand side.
- This saves time because the decomposition is the single biggest drain on resources. So, by not having to redo it every time, we save computational time.

LU Decomposition

- To use LU decompositions:
- First, use the slin.lu_factor() method on the coefficient matrix, and assign the result to a new variable.
- Then, use the slin.lu_solve() function with the decomposition and the rhs as arguments.

```
>>> cm = np.array([[4, -5, 8], [2, -8, 7], [-5, 8, 0]])
>>> rhs = np.array([4,0,-5])
>>> soln = slin.solve(cm,rhs)
>>> soln
array([ 1.53112033, 0.33195021, -0.05809129])
```


LU Decomposition Example

```
>>> cm
array([[ 4, -5, 8],
    [ 2, -8, 7],
    [-5, 8, 0]])
>> rhs
array([4, 0,-5])
>>> lu = slin.lu_factor(cm)
>>> soln = slin.lu_solve(lu,rhs)
>>> soln
array([ 1.53112033, 0.33195021,-0.05809129])
```


LU Decomposition Example

- Once the LU decomposition is accomplished we can use any right-hand side we want without redoing the decomposition.
>>> soln = slin.lu_solve(lu,[4, -3, 9])
>>> soln
array([0.64315353, 1.52697095, 1.13278008])
>>> soln = slin.lu_solve(lu,[-2, -3, -12])
>>> soln
array([1.77593361, -0.39004149, -1.38174274])

Banded Matrices

- Many large matrices in the sciences and engineering are of a banded nature, meaning that their non-zero values are along diagonals.
- Methods for efficiently solving these type of matrices have been developed.
- Banded matrices also don't require as much memory to store, since many of the values are zero

Representing Banded Matrices

- The banded matrix on the left is represented as the non-square matrix shown on the right.
$\left(\begin{array}{cccccccc}1 & -5 & 3 & 0 & 0 & 0 & 0 & 0 \\ 3 & 2 & -3 & 5 & 0 & 0 & 0 & 0 \\ 0 & -2 & 1 & 5 & 9 & 0 & 0 & 0 \\ 0 & 0 & 9 & -1 & 5 & 4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & -3 & -2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 & 1 & -6 \\ 0 & 0 & 0 & 0 & 0 & -3 & 2 & 7 \\ 0 & 0 & 0 & 0 & 0 & 0 & 9 & 1\end{array}\right) \Rightarrow\left(\begin{array}{cccccccc}0 & 0 & 3 & 5 & 9 & 4 & -2 & -6 \\ 0 & -5 & -3 & 5 & 5 & -3 & 1 & 7 \\ 1 & 2 & 1 & -1 & 2 & 0 & 2 & 1 \\ 3 & -2 & 9 & 0 & 2 & -3 & 9 & 0\end{array}\right)$

Representing Banded Matrices

- The upper diagonals have leading zeros.
- Lower diagonals have trailing zeros.

1	-5	3	0	0	0	0	0
3	2	-3	5	0	0	0	0
0	-2	1	5	9	0	0	0
0	0	9	-2	5	4	0	0
0	0	0	0	2	-3	-2	0
0	0	0	0	2	0	1	-6
0	0	0	0	0	-3	2	7
0	0	0	0	0	0	9	1

Solving Banded Matrix Equations

- To solve a set of equations with a banded coefficient matrix we use the scipy.linalg.solve_banded() function.
- The format for this function is slin.solve_banded((l,u), cm, rhs)
- (I, u) is a tuple where I is the number of nonzero lower diagonals, and u is the number of nonzero upper diagonals.
- cm is the coefficient matrix in banded form, and rhs is the right-hand side vector.

In-class Exercise

- Solve the set of matrix equations below using solve_banded().

$$
\left(\begin{array}{cccccccc}
1 & -5 & 3 & 0 & 0 & 0 & 0 & 0 \\
3 & 2 & -3 & 5 & 0 & 0 & 0 & 0 \\
0 & -2 & 1 & 5 & 9 & 0 & 0 & 0 \\
0 & 0 & 9 & -1 & 5 & 4 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & -3 & -2 & 0 \\
0 & 0 & 0 & 0 & 2 & 0 & 1 & -6 \\
0 & 0 & 0 & 0 & 0 & -3 & 2 & 7 \\
0 & 0 & 0 & 0 & 0 & 0 & 9 & 1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c \\
d \\
e \\
f \\
g \\
h
\end{array}\right)=\left(\begin{array}{c}
5 \\
3 \\
-3 \\
2 \\
0 \\
7 \\
8 \\
1
\end{array}\right)
$$

In-class Results

$a=200.639937$
b $=-25.491352$
c $=-107.698899$
$d=-174.206761$
$e=102.750000$
$f=70.833333$
$\mathrm{g}=-3.500000$
$h=32.500000$

