
ESCI 386 – Scientific Programming,
Analysis and Visualization with

Python

Lesson 2 – Syntax and Data Types

1

Comments

• Comments in Python are indicated with a
pound sign, #.

• Any text following a # and before the next
carriage return is ignored by the interpreter.

• For multiple-line comments a # must be used
at the beginning of each line.

2

Continuation Line

• The \ character at the end of a line of Python
code signifies that the next line is a
continuation of the current line.

3

Variable Names and Assignments

• Valid characters for variable, function, module,
and object names are any letter or number. The
underscore character can also be used.

• Numbers cannot be used as the first character.

• The underscore should not be used as either the
first or last character, unless you know what you
are doing. There are some special rules
concerning leading and trailing underscore
characters.

4

Variable Names and Assignments

• Python is case sensitive! Capitalization matters.

– The variable m and the variable M are not the same.

• Python supports parallel assignment

5

>>> a, b = 5, 'hi'
>>> a
5
>>> b
'hi'

Data Types

• Examples of data types are integers, floating-
point numbers, complex numbers, strings, etc.

• Python uses dynamic typing, which means
that the variable type is determined by its
input.
– The same variable name can be used as an integer

at one point, and then if a string is assigned to it,
it then becomes a string or character variable.

6

Numeric Data Types

• Python has the following numeric data types

– Boolean

– Integer

– Floating-point

– Complex

7

Boolean Data Type

• The Boolean data type has two values: True
and False (note capitalization).

– True also has a numerical value of 1

– False also has a numerical value of 0

8

>>> True == 1
True
>>> True == 2
False
>>> False == 1
False
>>> False == 0
True

Integer Data Type

• There are two integer data types in Python:

– Integer

• Ranges from approximately 2147483648 to
+2147483647

• Exact range is machine dependent

– Long integer

• Unlimited except by the machine’s available memory

9

Integer Data Type

• That there are two types of integers is pretty
transparent to the user (a long integer is
denoted by having an L after the number.)

10

>>> a = 34
>>> a
34
>>> b = 34*20000000000000000000
>>> b
680000000000000000000L

Floating-point Data Type

• All floating-point numbers are 64 bit (double-
precision)

• Scientific notation is the same as in other
languages

– Either lower or upper case (e or E) can be used.

11

>>> a = 67000000000000000000.0
>>> a
6.7e+19
>>> b = 2E3
>>> b
2000.0

Complex Data Type

• Complex numbers such as 4.5 + i8.2 are
denoted 4.5 + 8.2j

– Either lower-case or upper-case j or J may be
used to denote the imaginary part.

– The complex data type has some built-in
attributes and methods to retrieve the real part,
the imaginary part, and to compute the conjugate:

12

Complex Data Type Example

>>> c = 3.4 + 5.6j
>>> c
(3.4+5.6j)
>>> c.real
3.4
>>> c.imag
5.6
>>> c.conjugate()
(3.4-5.6j)

13

Objects, Attributes, and Methods

• The complex number example above provides
an opportunity to discuss the object-oriented
nature of Python.

• In Python most entities are objects. In the
example, the complex number c is an object
that represents an instance of the complex
class.

14

Attributes

• Objects may have attributes associated with
them.

– The attributes can be thought of as some type of
data that is bound to the object.

– Each attribute has a name.

– The value of the attribute is found by typing the
name of the object, a period, and then the name
of the attribute, in the form object.attribute

15

Attributes of the Complex Class

• In the complex number example, the complex
class has two attributes named ‘real’ and
‘imag’ that return the real and imaginary parts
of the complex number.

– The command c.real accessed the attribute
named ‘real’ of the complex number c.

– Likewise the command c.imag accessed the
attribute named ‘imag’.

16

Methods

– A method can be thought of as a function that
belongs to the object, and operates on the objects
attributes, or on other arguments supplied to the
method.

– An object’s methods are invoked by typing the name
of the object, a period, and then the name of the
method, along with parenthesis for the argument list,
in the form object.method([…argument list…])
• Note: The parenthesis must always be present to invoke a

method, even if there are not arguments needed.

17

Methods of the Complex Class

• In the complex number example, the complex
class has a method called conjugate() that
returns the conjugate of the number
represented by the object.

– In the example there are no arguments that need
to be passed to the method.

18

The None Data Type

• An object or variable with no value (also known as
the null value) has data type of None (note
capitalization).

• A value of None can be assigned to any variable or
object in the same manner as any other value is
assigned.

19

>>> a = None
>>> a
>>>

Strings

• The string data type is assigned by enclosing
the text in single, double, or even triple
quotes. The following are all valid ways of
denoting a string literal

– ‘Hello there’

– “Hello there”

– ‘‘‘Hello there’’’

– “““Hello there”””

20

Mixing Quotes

• Mixing single, double, and triple quotes allows
quotes to appear within strings.

21

>>> s = 'Dad said, "Do it now!"'

>>> s

'Dad said, "Do it now!"‘

>>> print(s)

Dad said, "Do it now!"

Triple Quotes

• Triple-quoted strings can include multiple
lines, and retain all formatting contained
within the triple quotes.

22

>>> s = '''This sentence runs
 over a
 few lines.'''
>>> s
'This sentence runs\n over a\n few lines.'
>>> print(s)
This sentence runs
 over a
 few lines.

Special Characters

• Special characters within string literals are preceded
by the backslash, \

• One common special character is the newline
command, \n, which forces any subsequent text to
be printed on a new line.

23

>>> print('Hello \n there.')
Hello
 there.

Escaping Special Characters

• The backslash character can be escaped by preceding
it with another backslash.

24

>>> print('Hello \\n there.')

Hello \n there.

Escaping Quotes and Apostrophes

• The backslash can also be used to escape quotes and
apostrophes within a string.

25

>>> s = 'An apostrophe looks like \'.'
>>> print(s)
An apostrophe looks like '.

Raw Strings

• Raw strings are strings where backslashes are left
as is, and are not interpreted as escape
characters.

• Raw strings are defined by preceding the string
literal with r.

26

>>> s = r'Hello \n there\'.'
>>> print(s)
Hello \n there\'.

Formatting Strings

• Strings are formatted in Python using the
.format() method.

27

>>> x = 654.589342982
>>> s = 'The value of x is {0:7.2f}'.format(x)
>>> s
'The value of x is 654.59'

Formatting Strings (cont.)

• The curly braces {} indicate that we will be
adding values into the string using the
.format() method.

• Within the curly braces the syntax is {n:fs}
where n is the nth variable in the argument to
the format() method, and fs is as format
specifier detailing how the value is to appear.

28

Format Specifiers

29

Spec. Explanation Examples

d

wd

+wd

0wd

integer

field width of w

force sign to be included

pad with zeros

'{0:d}'.format(45) => '45'

'{0:5d}'.format(45) => ' 45'

'{0:+5d}'.format(45) => ' +45'

'{0:05d}'.format(45) =>'00045'

f

w.df

0w.df

+w.df

floating point

field width w and d decimal places

pad with zeros

force sign to be included

'{0:f}'.format(-3.5) => '-3.500000'

'{0:6.2f}'.format(-3.5) => ' -3.50'

'{0:06.2f}'.format(-3.5) => '-03.50'

'{0:+6.2f}'.format(-3.5) => ' +3.50'

e

w.de

+w.de

scientific notation

field width w and d decimal places

force sign to be included

'{0:e}'.format(0.654) => '6.540000e-01'

'{0:9.2e}'.format(0.654) => ' 6.54e-01'

'{0:+9.2e}'.format(0.654) => '+6.54e-01'

Format Specifiers

30

Spec. Explanation Examples

g uses scientific notation for

exponents less than 4.

'{0:g}'.format(45679.3) => '45679.3'

'{0:g}'.format(0.00346) => '0.00346'

'{0:g}'.format(0.0000346) => '3.46e-05'

%

w.d%

0w.d%

converts decimals to percent

field width w and d decimal places

pad with zeros

'{0:%}'.format(0.4567) => '45.670000%'

'{0:8.2%}'.format(0.4567) => ' 45.67%'

'{0:8.2%}'.format(0.4567) => '0045.67%'

s

ws

string

field width of w

'{0:s}'.format('Hello') => 'Hello'

'{0:9s}'.format('Hello') => 'Hello '

Another Example

31

>>> name = 'Tom Jones'
>>> age = 45
>>> weight = 177.8
>>> height = 70.32
>>> s = 'His name is {0:s}. His is {1:d} years old. He is
{2:.0f} inches tall and weighs {3:.1f} pounds.'
>>> s.format(name, age, height, weight)
'His name is Tom Jones. His is 45 years old. He is 70
inches tall and weighs 177.8 pounds.'

Lists and Tuples

• Lists and tuples are both collections of values or
objects.
– The data types of the objects within the list do not have to

be the same.

• Lists are denoted with square brackets, while tuples are
denoted with parentheses.

32

>>> l = [4.5, -7.8, 'pickle', True, None, 5]

>>> t = (4.5, -7.8, 'pickle', True, None, 5)

list
tuple

Tuples versus Lists

• Lists can be modified after they are created.

– Lists are mutable.

• Tuples cannot be modified after they are
created.

– Tuples are immutable

33

Lists and Tuples May Contain Other
Lists and Tuples

34

>>> l = [4.5, ('cat', 'dog'), -5.3, [4, 8, -2], True]

Accessing Lists and Tuples

• The individual elements of a list or tuple are
accessed by denoting their indices within
square brackets.

35

>>> t = [0,-5, 8, 'hi', False]
>>> t[0]
0
>>> t[1]
-5
>>> t[2]
8
>>> t[3]
'hi'
>>> t[4]
False

Can Use Negative Indices

36

>>> t[-1]
False
>>> t[-2]
'hi'
>>> t[-3]
8
>>> t[-4]
-5
>>> t[-5]
0

Using Ranges

• Ranges of indices can also be used. These are
indicated by the form start:end.

• IMPORTANT! The last value in the range is NOT
returned.

37

>>> t
[0, -5, 8, 'hi', False]
>>> t[1:3]
[-5, 8]
>>> t[0:-1]
[0, -5, 8, 'hi']

Using Ranges

• All the elements from the first up to a given index
(minus one) are accessed by starting with a colon.

• All elements from a starting element to the end are
accessed by ending with a colon.

38

>>> t
[0, -5, 8, 'hi', False]
>>> t[:4]
[0, -5, 8, 'hi']
>>> t[2:]
[8, 'hi', False]

Striding

• Can specify a stride to skip elements.

• A negative stride can move backwards.

39

>>> t = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

>>> t[0:-1:3]

[1, 4, 7, 10]

>>> t[10:2:-2]

[11, 9, 7, 5]

Reversing Elements

• A negative stride can move backwards
through list.

• To return all the elements of an array in
reverse order use [::-1].

40

>>> t = [0,-5,8,'hi',False]

>>> t

[0, -5, 8, 'hi', False]

>>> t[::-1]

[False, 'hi', 8, -5, 0]

Accessing Nested Elements

• Nested elements are accessed by multiple
indices.

41

>>> n = [[2,3,7], [-2, -4, 8], ['pickle', 'Henry']]
>>> n[0]
[2, 3, 7]
>>> n[0][1]
3
>>> n[2][0]
'pickle'
>>> n[1][1:]
[-4, 8]

Assigning/Reassigning Elements

• Since lists are mutable we can reassign values
to their elements.

42

>>> p = ['cat', 'dog', 'ferret', 'llama']

>>> p[2] = 'squirrel'

>>> p

['cat', 'dog', 'squirrel', 'llama']

>>> p[0:2] = ['zebra', 'monkey']

>>> p

['zebra', 'monkey', 'squirrel', 'llama']

Lists versus Arrays

• Although lists kind of look like arrays, they are not
the same as an array.
– The elements of a list may be a mixture of variables

and objects of different types
– The elements of an array must be of the same data

type.

• Python does have arrays, but we won’t be using

them.
– Instead be using arrays from the Numerical Python

(NumPy) library.

43

Functions and Methods for Lists
(some also work for tuples)

• len(ls) returns the number of items in the list ls

• del ls[i:j] deletes items at indices i through j1

• ls.append(elem) adds element elem to end of list

• ls.extend(elems) adds the multiple elements
elems to the end of the list. Note that elems
must also be in the form of a list or tuple.

44

Functions and Methods for Lists
(some also work for tuples)

• ls.count(target) this method returns the number of instances
of target contained in the list.

• ls.index(target) this method returns the first index of the list
that contains target. If optional i and j are given, it returns
first index of occurrence in the range i through j1.

• ls.insert(i, elem) this method inserts elem at index i

• ls.pop(i) this method returns element at index i and also
removes element from the list.

 45

Functions and Methods for Lists
(some also work for tuples)

• ls.remove(target) this method removes first occurrence of
target from the list

• ls.reverse()this method reverses the list in place

• ls.sort()this method sorts the list in place. If keyword reverse
= True then it also reverses the results of the sort.

• Note that the reverse() and sort() methods both change
(mutate) the actual list. They don’t just return a copy.

46

The range() Function

• The built-in range() function provides a useful
means of generating sequences of integers.

47

>>> r = range(-5,8)

>>> r

[-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7]

Caution!

• Notice that the sequence is always one
short of the final number in the
argument.

• This is true almost everywhere in Python.

–Ranges and sequences of values do not
include the last item in the specified range.

48

The range() Function (cont.)

• Can use steps, or even go in reverse.

49

>>> r = range(-5,8,3)

>>> r

[-5, -2, 1, 4, 7]

>>> r = range(8, -5, -3)

>>> r

[8, 5, 2, -1, -4]

Dictionaries

• A dictionary is a collection of objects that are
referenced by a key rather than by an index
number.

• In other programming languages dictionaries
are referred to as hashes or associated arrays.

50

Dictionaries

• Dictionaries are defined using curly braces, with
the key:value pairs separated by a colon.

• Elements are accessed by using the key as though
it were an index.

51

d = {'first':'John', 'last':'Doe', 'age':34}
>>> d['first']
'John'
>>> d['age']
34

Alternate Means of Creating Dictionaries

52

>>> d = dict(first = 'John', last = 'Doe', age = 34)

>>> d = dict([['first','John'], ['last', 'Doe'], ['age', 34]])

From a nested list.

Dictionaries are Mutable

53

>>> d

{'age': 34, 'last': 'Doe', 'first': 'John'}

>>> d['age'] = 39

>>> d

{'age': 39, 'last': 'Doe', 'first': 'John'}

Functions and Methods for Dictionaries

• len(d) returns the number of items in d

• del d[k] removes the item in d whose key is k.

• k in d used to see if d contains an item with key
given by k.
– Returns either True or False.

• d.clear() deletes all items in the dictionary

54

Functions and Methods for Dictionaries

• d.copy() makes a copy of the dictionary

• d.keys() returns a list of all keys in the dictionary

• d.items() returns a list containing tuples of all key-
value pairs.

• d.values() returns a list of all values in the
dictionary

55

Finding an Object’s Type
• The data type of an object can be found by

using the type(obj) function.

56

>>> a = 4

>>> type(a)

<type 'int'>

>>> b = 4.5

>>> type(b)

<type 'float'>

>>> c = 'Hello'

>>> type(c)

<type 'str'>

>>> d = 4+7j

>>> type(d)

<type 'complex'>

>>> e = (4, 7, 2.3, 'radish')

>>> type(e)

<type 'tuple'>

Shallow Copy vs. Deep Copy

• One quirk of Python is that for compound objects
(e.g., lists, tuples, dictionaries) using the equals
sign only creates a shallow-copy which uses
pointers or references to the original object.

57

>>> a = ['cat', 'dog', 'mouse']

>>> b = a

>>> a,b

(['cat', 'dog', 'mouse'], ['cat', 'dog', 'mouse'])

>>> a[1] = 'frog'

>>> a,b

(['cat', 'frog', 'mouse'], ['cat', 'frog', 'mouse'])

Creates a shallow copy

Creating a Deep Copy

• If you truly want an independent copy of a
compound object you must use the
copy.deepcopy() function.

58

>>> import copy

>>> a = ['cat', 'dog', 'mouse']

>>> b = copy.deepcopy(a)

>>> a,b

(['cat', 'dog', 'mouse'], ['cat', 'dog', 'mouse'])

>>> a[1] = 'frog'

>>> a,b

(['cat', 'frog', 'mouse'], ['cat', 'dog', 'mouse'])

Creates a deep copy

