
ESCI 386 – Scientific Programming,
Analysis and Visualization with

Python

Lesson 6 - File IO

1

Opening/Closing Files
• A file is opened for reading using the open statement

f = open(file_name, ‘r’)
– This returns a file object, in this case named f. We

could have named it whatever we wanted.
– The ‘r’ specifies the mode of the file be read only.
– The different possible modes are

2

Mode Meaning Mode Meaning

‘r’ Read only (text file) ‘rb’ Read only (binary file)

‘w’ Write only (text file) ‘wb’ Write only (binary file)

‘r+’ or
‘w+’

Read and write (text file) ‘rb+’ or
‘wb+’

Read and write (binary file)

‘a’ Append (text file) ‘ab’ Append (binary file)

Opening/Closing Files

• An ASCII file is opened for reading using the open statement
f = open(file_name, ‘r’)
– This returns a file object, in this case named f. We could have named it

whatever we wanted.
– The ‘r’ specifies the mode of the file be read only.
– To open a file for writing we would use ‘w’ instead of ‘r’.
– Opening a file with ‘a’ will open the file for writing and append data to the

end of the file.
– To open a file for both reading and writing we use either ‘r+’ or ‘w+’.

• You should always close a file when you are done with it. This is done with
f.close()

3

Automatically Closing Files

• Python has a shorthand for opening a file, manipulating its
contents, and then automatically closing it.

• The syntax is

with open(filename, ‘r’) as f:
 [code statements within code block]

• This opens the file and gives the file object the name f.
• The file will automatically close when the code block

completes, without having to explicitely close it.

4

Interactive File Selection

• The code below allows interactive selection of
file names.

5

import Tkinter as tk
from tkFileDialog import askopenfilename as pickfile
window = tk.Tk() # Create a window
window.withdraw() # Hide the window
filename = pickfile(multiple=False)
window.quit() # quit the window

Interactive File Selection (cont.)

• The full path and name of the selected file will be stored as
a string in the variable filename, which can then be used to
open and manipulate the file.
– Even on Windows machines the path names will use Linux style

forward slashes ‘/’ rather than Windows style back slashes ‘\’.

• Multiple file names can also be selected by setting the
multiple keyword to True.
– If multiple files are selected then filename will be a single string

containing all the filenames separated by white space.
– On Windows machines where files themselves may have white

spaces, if any of the filenames have white spaces within them
then their filenames are contained in curly braces.

6

Interactive Directory Selection

• Directories can also be selected interactively.

7

import Tkinter as tk
from tkFileDialog import askdirectory as pickdir
window = tk.Tk() # Create a window
window.withdraw() # Hide the window
dirname = pickdir(mustexist=True)
window.quit() # quit the window

Reading from Text Files

• The simplest way to sequentially read all
the lines in a file an manipulate them is to
simply iterate over the file object. For
example, to read the lines of a file and
print them to the screen we would use

f = open('datafile.txt', 'r')
for line in f:
 print(line)

 8

Reading from Text Files

• We can also read a single line at a time using the
readline() method.
line = f.readline()

• If we want to read all the lines in file and place them
into a list, with each line being a separate element of
the list, we can use the readlines() method
lines = f.readlines()

– lines[0] would then contain the entire first line of the file

as a string, lines[1] would contain the next line, etc.

9

Writing Text to Files

• Writing to text files is accomplished with the
write() or writelines() methods.

– The write() method writes a string to the file.

– The writelines() method writes a list of strings to
file.

10

Writing Text to Files (Example)

f = open('myfile.txt', 'w')

f.write('The quick brown fox')

f.write(' jumped over the\n')

f.write('lazy dog.')

f.close()

11

• Results in the contents of myfile.txt

The quick brown fox jumped over the

lazy dog.

Writing Text to Files

• Both the write() and writelines() methods
require strings as the input data type.

• To write numerical data to a file using these
methods you first have to convert them to
strings.

12

Reading and Writing CSV Files

• In many data files the values are separated by
commas, and these files are known as comma-
separated values files, or CSV files.

• Python includes a csv module that has
functions and methods for easily reading and
writing CSV files.

13

Reading and Writing CSV Files

• To read CSV file titled ‘myfile.csv’ we first open the file
as usual, and then create an instance of a reader
object. The reader object is an iterable object, that can
be iterated over the lines in the file.

• IMPORTANT: When opening a file for csv reader or
writer, it should be opened as a binary file, using either
‘rb’ or ‘wb’ as the mode.
– This prevent an extra blank lines being inserted in the

output file.

14

Example Reading CSV File

import csv

f = open('myfile.csv', 'rb') # NOTE: Used 'rb'

r = csv.reader(f) # creates reader object

for i, line in enumerate(r):

 if i == 0:

 continue # skips header row

 n, rho, mass = line

 volume = float(mass)/float(rho)

 print(n, volume)

f.close()
15

Example Writing CSV File

import csv

f = open('myfile-write.csv', 'wb') # NOTE: Used 'wb'

w = csv.writer(f)

data = [['Element', 'Atomic Number', 'Molar Mass'],\

 ['Helium', '1', '1.008'],\

 ['Aluminum', '13', '26.98']]

w.writerows(data)

f.close()

16

The csv Module is Flexible

• The csv module can be used with delimiters
other than commas.

• To do this, we set the delimiter keyword as
shown below:

 r = csv.reader(f, delimiter = ‘;’) # semicolon delimited file

 r = csv.reader(f, delimiter = ‘ ‘) # space delimited file

17

Using the with Statement

• The with statement is a shorthand way of always
making certain that your files are closed when
you are done with them.

• The with statement is used as follows

with open(filename, ‘r’) as f:
 code block that uses the file object f

• When the code block is exited, the file object f

will be automatically closed

18

with Statement Example

filename = ‘my_input_file’

with open(filename, ‘r’) as f:

 data = f.readlines()

for line in data:

 print(line)

19

filename = ‘my_input_file’

f = open(filename, ‘r’):

data = f.readlines()

f.close()

for line in data:

 print(line)

File closure is automatic
using the ‘with’ statement

Writing and Reading Numpy Arrays to
Text Files

• Numpy Arrays can be written to text files using
– a.tofile()
– numpy.savetxt()

• Numpy Arrays can be read from text files using

– numpy.fromfile()
– numpy.loadtxt()
– numpy.genfromtxt()

• These methods can also read/write binary files, but

they won’t be machine portable.

20

Very basic

Can skip headers, specify columns

Most flexible. Handles missing data.
Skip footers and headers. Much more.

Can write headers/footers

Examples of Reading Data

• On the next slide we show four example
programs for reading numerical data from a
text file of the form shown below, with a
header row and commas separating values.

21

Gender, Weight (lbs)
Male, 171.0
Male, 179.6
Male, 174.7
Male, 172.5
Female, 161.4
Male, 192.7
Male, 190.4
Male, 193.4

Examples of Reading Data

22

filein = 'weight-data.txt'
weight = [] # empty list to hold data

with open(filein, 'r') as f:
 for i, line in enumerate(f):
 if i == 0:
 pass # skips header
 else:
 data = line.split(',') # Splits line
 weight.append(float(data[-1]))

print(weight)

filein = 'weight-data.txt'
weight = [] # empty list to hold data

with open(filein, 'r') as f:
 file_data = f.readlines()
 for line in file_data[1:]: # Skips head
 data = line.split(',') # Splits line
 weight.append(float(data[-1])

print(weight)

Iterating over file object Using readlines()

Examples of Reading Data

23

import csv

filein = 'weight-data.txt'
weight = [] # empty list

with open(filein, 'rb') as f:
 w = csv.reader(f, delimiter = ',')
 for i, line in enumerate(w):
 if i == 0:
 pass # Skip first row
 else:
 weight.append(float(line[-1]))

print(weight)

import numpy as np

filein = 'weight-data.txt'

Use loadtxt skipping 1 row and
only using second column
weight = np.loadtxt(filein,
 dtype = np.float_,
 delimiter = ',',
 skiprows = 1,
 usecols = (1,))

print(weight)

Note comma (needed if only one column is used)

Using CSV Reader Using numpy.loadtxt()

.npy and .npz files

• NumPy provides its own functions to read and
write arrays to binary files. This is
accomplished with either:

– np.save() function, which writes a single array to a

NumPy .npy file.

– np.savez() function, which archives several arrays
into a NumPy .npz file.

24

Example
import numpy as np
a = np.arange(0, 100)*0.5
b = np.arange(-100, 0)*0.5
np.save('a-file', a)
np.save('b-file', b)

np.savez('ab-file', a=a, b=b)

25

• Creates three files:
• ‘a-file.npy’ which contains the values for a
• ‘b-file.npy’ which contains the values for b
• ‘ab-file.npz’ which is an archive file containing both the

a and b values

Loading .npy Files

• To retrieve the values from the .npy files we
use the np.load() function

a = np.load('a-file.npy')

b = np.load('b-file.npy')

26

Loading .npz Files

• To retrieve the values from the .npz files we
also use the np.load() function to load all the
data into a dictionary that contains the
archived arrays.

27

z = np.load('ab-file.npz')
a = z[‘a’]
b = z[‘b’]

Loading .npz Files

• To find the names of the arrays used in the
dictionary, use the files attribute of the
dictionary

28

>>> z.files
[‘a’, ‘b’]

Working with Pathnames

• The os.path module contains some nice
functions for manipulating path and file
names.

• I usually import os.path aliased to pth

import os.path as pth

29

Some os.path Functions

>>> import os.path as pth

>>> p = 'C:\\data\\temperature\\jun11.dat'

>>> pth.abspath(p)

'C:\\data\\temperature\\jun11.dat'

>>> pth.basename(p)

'jun11.dat'

>>> pth.dirname(p)

'C:\\data\\temperature’

30

Some os.path Functions

>>> pth.exists(p)

False

>>> pth.isfile(p)

False

>>> pth.isdir(p)

False

31

Some os.path Functions

>>> pth.split(p)

('C:\\data\\temperature', 'jun11.dat')

>>> pth.splitdrive(p)

('C:', '\\data\\temperature\\jun11.dat')

>>> pth.splitext(p)

('C:\\data\\temperature\\jun11', '.dat')

32

