
ESCI 386 – Scientific Programming, 
Analysis and Visualization with 

Python 

Lesson 6 - File IO 
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Opening/Closing Files 
• A file is opened for reading using the open statement 

f = open(file_name, ‘r’) 
– This returns a file object, in this case named f.  We 

could have named it whatever we wanted. 
– The ‘r’ specifies the mode of the file be read only. 
– The different possible modes are 
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Mode Meaning Mode Meaning 

‘r’  Read only (text file) ‘rb’ Read only (binary file) 

‘w’ Write only (text file) ‘wb’ Write only (binary file) 

‘r+’ or 
‘w+’ 

Read and write  (text file) ‘rb+’ or 
‘wb+’ 

Read and write (binary file) 

‘a’ Append (text file) ‘ab’ Append (binary file) 



Opening/Closing Files 

• An ASCII file is opened for reading using the open statement 
f = open(file_name, ‘r’) 
– This returns a file object, in this case named f.  We could have named it 

whatever we wanted. 
– The ‘r’ specifies the mode of the file be read only. 
– To open a file for writing we would use ‘w’ instead of ‘r’. 
– Opening a file with ‘a’ will open the file for writing and append data to the 

end of the file. 
– To open a file for both reading and writing we use either ‘r+’ or ‘w+’. 

 
 

• You should always close a file when you are done with it.  This is done with  
f.close() 
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Automatically Closing Files 

• Python has a shorthand for opening a file, manipulating its 
contents, and then automatically closing it. 

• The syntax is 
 
with open(filename, ‘r’) as f: 
 [code statements within code block] 

 

• This opens the file and gives the file object the name f. 
• The file will automatically close when the code block 

completes, without having to explicitely close it. 
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Interactive File Selection 

• The code below allows interactive selection of 
file names. 
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import Tkinter as tk 
from tkFileDialog import askopenfilename as pickfile 
window = tk.Tk()   # Create a window 
window.withdraw()  # Hide the window 
filename = pickfile(multiple=False) 
window.quit()      # quit the window 



Interactive File Selection (cont.) 

• The full path and name of the selected file will be stored as 
a string in the variable filename, which can then be used to 
open and manipulate the file. 
– Even on Windows machines the path names will use Linux style 

forward slashes ‘/’ rather than Windows style back slashes ‘\’. 
 

• Multiple file names can also be selected by setting the 
multiple keyword to True. 
– If multiple files are selected then filename will be a single string 

containing all the filenames separated by white space. 
– On Windows machines where files themselves may have white 

spaces, if any of the filenames have white spaces within them 
then their filenames are contained in curly braces. 
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Interactive Directory Selection 

• Directories can also be selected interactively. 
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import Tkinter as tk 
from tkFileDialog import askdirectory as pickdir 
window = tk.Tk()   # Create a window 
window.withdraw()  # Hide the window 
dirname = pickdir(mustexist=True) 
window.quit()      # quit the window 



Reading from Text Files 

• The simplest way to sequentially read all 
the lines in a file an manipulate them is to 
simply iterate over the file object.  For 
example, to read the lines of a file and 
print them to the screen we would use 
 

f = open('datafile.txt', 'r') 
for line in f: 
 print(line) 
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Reading from Text Files 

• We can also read a single line at a time using the 
readline() method. 
line = f.readline() 
 

• If we want to read all the lines in file and place them 
into a list, with each line being a separate element of 
the list, we can use the readlines() method 
lines = f.readlines() 
 
– lines[0] would then contain the entire first line of the file 

as a string, lines[1] would contain the next line, etc. 
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Writing Text to Files 

• Writing to text files is accomplished with the 
write() or writelines() methods. 

 

– The write() method writes a string to the file. 

 

– The writelines() method writes a list of strings to 
file. 
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Writing Text to Files (Example) 

f = open('myfile.txt', 'w') 

f.write('The quick brown fox') 

f.write(' jumped over the\n') 

f.write('lazy dog.') 

f.close() 
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• Results in the contents of myfile.txt 

The quick brown fox jumped over the 

lazy dog. 

 



Writing Text to Files 

• Both the write() and writelines() methods 
require strings as the input data type.   

 

• To write numerical data to a file using these 
methods you first have to convert them to 
strings. 
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Reading and Writing CSV Files 

• In many data files the values are separated by 
commas, and these files are known as comma-
separated values files, or CSV files. 

 

• Python includes a csv module that has 
functions and methods for easily reading and 
writing CSV files. 
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Reading and Writing CSV Files 

 

• To read CSV file titled ‘myfile.csv’  we first open the file 
as usual, and then create an instance of a reader 
object.  The reader object is an iterable object, that can 
be iterated over the lines in the file. 

 

• IMPORTANT:  When opening a file for csv reader or 
writer, it should be opened as a binary file, using either 
‘rb’ or ‘wb’ as the mode. 
– This prevent an extra blank lines being inserted in the 

output file. 
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Example Reading CSV File 

import csv 

f = open('myfile.csv', 'rb')  # NOTE:  Used 'rb' 

r = csv.reader(f)  # creates reader object 

for i, line in enumerate(r): 

    if i == 0: 

        continue   #  skips header row 

    n, rho, mass = line 

    volume = float(mass)/float(rho) 

    print(n, volume) 

f.close() 
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Example Writing CSV File 

import csv 

f = open('myfile-write.csv', 'wb')  # NOTE:  Used 'wb' 

w = csv.writer(f) 

data = [['Element', 'Atomic Number', 'Molar Mass'],\ 

        ['Helium', '1', '1.008'],\ 

        ['Aluminum', '13', '26.98']] 

w.writerows(data) 

f.close() 
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The csv Module is Flexible 

• The csv module can be used with delimiters 
other than commas. 

 

• To do this, we set the delimiter keyword as 
shown below: 

 r = csv.reader(f, delimiter = ‘;’)  # semicolon delimited file 

 r = csv.reader(f, delimiter = ‘ ‘)  # space delimited file 
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Using the with Statement 

• The with statement is a shorthand way of always 
making certain that your files are closed when 
you are done with them. 

 
• The with statement is used as follows 

with open(filename, ‘r’) as f: 
 code block that uses the file object f 

 
• When the code block is exited, the file object f 

will be automatically closed 
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with Statement Example 

filename = ‘my_input_file’ 

with open(filename, ‘r’) as f: 

 data = f.readlines() 

for line in data: 

 print(line) 
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filename = ‘my_input_file’ 

f = open(filename, ‘r’): 

data = f.readlines() 

f.close() 

for line in data: 

 print(line) 

 

 

File closure is automatic 
using the ‘with’ statement 



Writing and Reading Numpy Arrays to 
Text Files 

• Numpy Arrays can be written to text files using 
– a.tofile() 
– numpy.savetxt() 

 
• Numpy Arrays can be read from text files using 

– numpy.fromfile() 
– numpy.loadtxt() 
– numpy.genfromtxt()    

 
• These methods can also read/write binary files, but 

they won’t be machine portable. 
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Very basic 

Can skip headers, specify columns  

Most flexible.  Handles missing data. 
Skip footers and headers.  Much more. 

Can write headers/footers  



Examples of Reading Data 

• On the next slide we show four example 
programs for reading numerical data from a 
text file of the form shown below, with a 
header row and commas separating values. 
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Gender, Weight (lbs) 
Male, 171.0 
Male, 179.6 
Male, 174.7 
Male, 172.5 
Female, 161.4 
Male, 192.7 
Male, 190.4 
Male, 193.4 
 



Examples of Reading Data 
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filein = 'weight-data.txt' 
weight = [] # empty list to hold data 
 
with open(filein, 'r') as f: 
  for i, line in enumerate(f): 
    if i == 0: 
      pass # skips header 
    else: 
      data = line.split(',') # Splits line 
      weight.append(float(data[-1])) 
 
print(weight) 

filein = 'weight-data.txt' 
weight = [] # empty list to hold data 
 
with open(filein, 'r') as f: 
  file_data = f.readlines() 
  for line in file_data[1:]: # Skips head 
    data = line.split(',')  # Splits line 
    weight.append(float(data[-1])  
 
print(weight) 

Iterating over file object Using readlines() 



Examples of Reading Data 
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import csv 
 
filein = 'weight-data.txt' 
weight = [] # empty list 
 
with open(filein, 'rb') as f: 
  w = csv.reader(f, delimiter = ',') 
  for i, line in enumerate(w): 
    if i == 0: 
      pass # Skip first row 
    else: 
      weight.append(float(line[-1]))  
 
print(weight) 

import numpy as np 
 
filein = 'weight-data.txt' 
 
# Use loadtxt skipping 1 row and  
#  only using second column 
weight = np.loadtxt(filein,  
                 dtype = np.float_, 
                 delimiter = ',', 
                 skiprows = 1, 
                 usecols = (1,)) 
 
print(weight) 

Note comma (needed if only one column is used) 

Using CSV Reader Using numpy.loadtxt() 



.npy and .npz files 

• NumPy provides its own functions to read and 
write arrays to binary files.  This is 
accomplished with either: 

 
–  np.save() function, which writes a single array to a 

NumPy .npy file. 

 

– np.savez() function, which archives several arrays 
into a NumPy .npz file. 
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Example 
import numpy as np 
a = np.arange(0, 100)*0.5 
b = np.arange(-100, 0)*0.5 
np.save('a-file', a) 
np.save('b-file', b) 

np.savez('ab-file', a=a, b=b) 
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• Creates three files: 
• ‘a-file.npy’ which contains the values for a 
• ‘b-file.npy’ which contains the values for b 
• ‘ab-file.npz’ which is an archive file containing both the 

a and b values 



Loading .npy Files 

• To retrieve the values from the .npy files we 
use the np.load() function 

a = np.load('a-file.npy') 

b = np.load('b-file.npy') 
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Loading .npz Files 

• To retrieve the values from the .npz files we 
also use the np.load() function to load all the 
data into a dictionary that contains the 
archived arrays. 
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z = np.load('ab-file.npz') 
a = z[‘a’] 
b = z[‘b’] 
 



Loading .npz Files 

• To find the names of the arrays used in the 
dictionary, use the files attribute of the 
dictionary 
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>>> z.files 
[‘a’, ‘b’] 
 



Working with Pathnames 

• The os.path module contains some nice 
functions for manipulating path and file 
names. 

 

• I usually import os.path aliased to pth 

import os.path as pth 
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Some os.path Functions 

>>> import os.path as pth 

>>> p = 'C:\\data\\temperature\\jun11.dat' 

>>> pth.abspath(p) 

'C:\\data\\temperature\\jun11.dat' 

>>> pth.basename(p) 

'jun11.dat' 

>>> pth.dirname(p) 

'C:\\data\\temperature’ 
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Some os.path Functions 

>>> pth.exists(p) 

False 

>>> pth.isfile(p) 

False 

>>> pth.isdir(p) 

False 
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Some os.path Functions 

>>> pth.split(p) 

('C:\\data\\temperature', 'jun11.dat') 

>>> pth.splitdrive(p) 

('C:', '\\data\\temperature\\jun11.dat') 

>>> pth.splitext(p) 

('C:\\data\\temperature\\jun11', '.dat') 
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