ESCI 107/109 – The Atmosphere
Lesson 3 – Temperature

Reading: *Meteorology Today*, Chapters 2 and 3

GENERAL

- Temperature is a measure of the average kinetic energy of the molecules in the substance.
 - If you add energy to an object, its molecules will move faster, and have more kinetic energy...therefore, its temperature will go up.

- A temperature scale must have at least two fixed points, or reference points.
 - **Celsius**
 - 0°C chosen as the melting point of ice.
 - 100°C chosen as boiling point of water (at sea-level pressure)
 - **Kelvin**
 - 0 K chosen as coldest theoretical temperature possible, referred to as *absolute zero*. No object can be cooled below this temperature.
 - A change of 1 K is chosen to correspond to a change of 1°C. Therefore, the freezing point of pure water is 273 K.
 - **Fahrenheit**
 - 0°F chosen as lowest temperature that a mixture of ice, water, and ammonia salt (ammonium chloride) can reach in equilibrium.
 - 32°F is the freezing point of pure water.
 - 96°F was originally chosen as the blood temperature of a healthy person (now 98.6°F on the modern Fahrenheit scale).
 - Fahrenheit’s choices of his fixed points seems arbitrary, and his exact reasoning hasn’t been recorded.

- **Note:** If you are interested in historical accounts of thermometers and the creation of the various temperature scales you can try the following two books: *A History of the Thermometer and its use in Meteorology* by W.E.K. Middleton, Johns Hopkins Press, 1966; or *Inventing Temperature: Measurement and Scientific Progress* by H. Chang, Oxford University Press, 2004.
Temperature measurement
- Temperature should be measured in the shade, so that solar radiation does not heat thermometer and give exaggerated readings.
- Temperature should not be measured close to a building or hot pavement.
 - Ideally, a well ventilated, white instrument shelter should be used.
- Lines of constant temperature are called isotherms.

CONTROLS OF TEMPERATURE
- Latitude
- Differential heating of land and water
 - Difference in specific heat
 - Evaporation
- Ocean currents
 - East coast of continents have warm currents
 - West coast of continents have cold currents
- Altitude
 - Environmental lapse rate can’t explain all of the difference between a valley station and a mountain station.
 - Daily temperature range generally increases with altitude (because atmosphere is less dense, and solar radiation is more intense at higher altitudes).
- Geographic position
 - Windward vs. leeward coast
 - Mountains act as “rain shadow”
 - Urban vs. rural – The heat island
- Cloud cover and albedo
 - During day, clouds lead to cooler temperatures
 - At night, clouds lead to warmer temperatures
 - Snow absorbs less radiation than bare ground, and results in cooler temperatures. Dirty snow absorbs more radiation than fresh snow.
- **Humidity**
 - Since water vapor is a greenhouse gas, then in general, humid nights are warmer than dry nights.

- **Wind**
 - Wind mixes the air near the ground.
 - In the day time the warmest air is usually near the ground. Because of mixing, the wind will move cooler air toward the ground during the day.
 - At night the coolest air is usually near the ground. Because of mixing, the wind will move warmer air toward the ground at night.
 - So, in general
 - Windy nights are warmer than calm nights.
 - Windy days are cooler than warm days.

GLOBAL TEMPERATURE DISTRIBUTION

- Temperature decreases from the tropics to the poles
- Spacing of the isotherms (*temperature gradient*) is not uniform with longitude. This is due to:
 - Ocean currents
 - Land-sea contrasts
- Band of maximum temperature migrates with the seasons
- Hottest and coldest temperatures are over land

TEMPERATURE CYCLES

- Daily cycle
 - Time of daily temperature maximum does not coincide with time of maximum solar radiation.
 - Maximum temperature usually in afternoon
 - Minimum usually near sunrise
 - Daily temperature variation is smaller on a windward coast
 - Clouds and wind both decrease the daily temperature variation
● Annual cycle
 ○ Month of annual temperature maximum does not coincide with month of maximum solar radiation July and August are usually hottest months in U.S., but max solar radiation is in June).
 ○ Month of annual temperature minimum does not coincide with month of minimum solar radiation.

USEFUL TEMPERATURE INDICES

● Heating and cooling degree days
 ○ Used to estimate energy consumption for heating or cooling a building.
 ○ Assume no heating or cooling if temperature is 65 degrees F.
 ○ Find difference between daily mean temperature and 65 degrees. Every 1 degree difference is a heating degree day if positive, or a cooling degree day if negative.

● Wind chill
 ○ Factors in the effects of wind and evaporation on the human sensation of temperature to give an wind-chill equivalent temperature.
 ○ A thermometer reads air temperature, NOT the wind-chill equivalent temperature!

● Heat index factors in the effect of humidity on the human sensation of temperature.