ESCI 386 – Scientific Programming, Analysis and Visualization with Python

Lesson 18 - Linear Algebra
Matrix Operations

• In many instances, numpy arrays can be thought of as matrices.

• In the next slides we explore some matrix operations on numpy arrays.
Determinants

• The determinant of an array is found by using the det() function from the scipy.linalg module.

```python
>>> import scipy.linalg as slin
>>> a = array([[ 3, -5,  8],
             [-1,  2,  3],
             [-5, -6,  2]])
>>> slin.det(a)
259.0
```
The trace of an array is found by using the `trace()` function from `numpy`.

```python
>>> import numpy as np
>>> a
array([[ 3, -5,  8],
       [-1,  2,  3],
       [-5, -6,  2]])
>>> np.trace(a)
7
```
Trace (cont)

• Offset traces can also be computed.

```python
>>> a
array([[ 3, -5,  8],
       [-1,  2,  3],
       [-5, -6,  2]])

>>> np.trace(a,-1)
-7

>>> np.trace(a,1)
-2
```
Inverses

- Inverse of a matrix is computed from scipy.linalg.inv() function.

```python
>>> a
darray([[ 3, -5,  8],
        [-1,  2,  3],
        [-5, -6,  2]])
>>> slin.inv(a)
darray([[ 0.08494208, -0.14671815, -0.11969112],
        [-0.05019305,  0.17760618, -0.06563707],
        [ 0.06177606,  0.16602317,  0.003861   ]])
```
Inverses

• Transpose of a matrix is computed from numpy.transpose() function.

```python
a
array([[ 3, -5,  8],
      [-1,  2,  3],
      [-5, -6,  2]])

>>> np.transpose(a)
array([[ 3, -1, -5],
      [-5,  2, -6],
      [ 8,  3,  2]])
```
NumPy Matrix Objects

• NumPy also has matrix objects that are an extension of arrays.

• These matrix objects have built in methods for determinant and inverse.
NumPy Matrix Objects

```
a
matrix([[ 3, -5,  8],
        [-1,  2,  3],
        [-5, -6,  2]])

>>> a.T
matrix([[ 3, -1, -5],
        [-5,  2, -6],
        [ 8,  3,  2]])

>>> a.I
matrix([[ 0.08494208, -0.14671815, -0.11969112],
        [-0.05019305,  0.17760618, -0.06563707],
        [ 0.06177606,  0.16602317,  0.003861]])
```
Matrix Objects Support Matrix Multiplication

```python
>>> a
matrix([[ 3, -5,  8],
        [-1,  2,  3],
        [-5, -6,  2]])

>>> b
matrix([[ 3],
        [ 4],
        [-1]])

>>> a*b
matrix([[-19],
        [  2],
        [-41]])
```
Solving Systems of Equations

• A system of linear, algebraic equations can be written in matrix form.

\[
\begin{align*}
 a_1x + b_1y + c_1z &= d_1 \\
 a_2x + b_2y + c_2z &= d_2 \\
 a_3x + b_3y + c_3z &= d_3
\end{align*}
\]

\[
\begin{pmatrix}
a_1 & b_1 & c_1 \\
a_2 & b_2 & c_2 \\
a_3 & b_3 & c_3
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix} =
\begin{pmatrix}
d_1 \\
d_2 \\
d_3
\end{pmatrix}
\]

• The 3×3 matrix is called the coefficient matrix
• The right-hand side is a vector.
Methods/Functions for Solving Matrix Equations

• Solving matrix equations is computationally intensive.
• We will discuss several methods for solving these equations.
• These methods are all from the scipy.linalg module.
Methods/Functions for Solving Matrix Equations

• We will illustrate these methods for the simple system of equations:

\[
4x - 5y + 8z = 4 \\
2x - 8y + 7z = 0 \\
-5x + 8y = -5
\]
scipy.linalg.solve()

- This method takes the coefficient matrix and the right-hand side vector as arguments and return a vector with the solutions.

```python
>>> cm = np.array([[4, -5, 8], [2, -8, 7], [-5, 8, 0]])
>>> rhs = np.array([4,0,-5])
>>> soln = slin.solve(cm,rhs)
>>> soln
array([ 1.53112033,  0.33195021, -0.05809129])
```
Coefficient Matrix Must be Nonsingular!

• If the coefficient matrix is singular (has determinant of zero) then an error results.

```python
>>> cm = np.array([[4, -5, 8], [8, -10, 16], [-5, 8, 0]])
>>> rhs = np.array([4,8,-5])
>>> soln = slin.solve(cm,rhs)

Traceback (most recent call last):
  File "<pyshell#45>" line 1 in <module>
    soln = slin.solve(cm,rhs)
  File "C:\Python27\lib\site-packages\scipy\linalg\basic.py", line 68 in solve
    raise LinAlgError("singular matrix")
LinAlgError: singular matrix
```
Very Large Systems of Equations

• Very large systems of equations are very computationally intensive to solve.

• There are several specialized methods to efficiently solve large systems of equations.

• We will discuss some of these.
LU Decomposition

• If the right-hand side vector changes, but the coefficient matrix doesn’t change, then the coefficient matrix can be decomposed using LU decomposition.

• This LU decomposition can then be used to solve the system for any different right-hand side.

• This saves time because the decomposition is the single biggest drain on resources. So, by not having to redo it every time, we save computational time.
LU Decomposition

• To use LU decompositions:
 – First, use the slin.lu_factor() method on the coefficient matrix, and assign the result to a new variable.
 – Then, use the slin.lu_solve() function with the decomposition and the rhs as arguments.

```python
>>> cm = np.array([[4, -5, 8], [2, -8, 7], [-5, 8, 0]])
>>> rhs = np.array([4,0,-5])
>>> soln = slin.solve(cm,rhs)
>>> soln
array([ 1.53112033,  0.33195021, -0.05809129])
```
LU Decomposition Example

```python
>>> cm
array([[ 4, -5,  8],
       [ 2, -8,  7],
       [-5,  8,  0]])

>>> rhs
array([ 4,  0, -5])

>>> lu = slin.lu_factor(cm)

>>> soln = slin.lu_solve(lu, rhs)

>>> soln
array([ 1.53112033,  0.33195021, -0.05809129])
```
LU Decomposition Example

• Once the LU decomposition is accomplished we can use any right-hand side we want without redoing the decomposition.

```python
>>> soln = slin.lu_solve(lu,[4, -3, 9])
>>> soln
array([ 0.64315353,  1.52697095,  1.13278008])
>>> soln = slin.lu_solve(lu,[-2, -3, -12])
>>> soln
array([ 1.77593361, -0.39004149, -1.38174274])
```
Banded Matrices

• Many large matrices in the sciences and engineering are of a banded nature, meaning that their non-zero values are along diagonals.

• Methods for efficiently solving these type of matrices have been developed.

• Banded matrices also don’t require as much memory to store, since many of the values are zero.
Representing Banded Matrices

- The banded matrix on the left is represented as the non-square matrix shown on the right.

\[
\begin{bmatrix}
1 & -5 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\
3 & 2 & -3 & 5 & 0 & 0 & 0 & 0 & 0 \\
0 & -2 & 1 & 5 & 9 & 0 & 0 & 0 & 0 \\
0 & 0 & 9 & -1 & 5 & 4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & -3 & -2 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 0 & 1 & -6 & 0 \\
0 & 0 & 0 & 0 & 0 & -3 & 2 & 7 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 9 & 1 \\
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
0 & 0 & 3 & 5 & 9 & 4 & -2 & -6 \\
0 & -5 & -3 & 5 & 5 & -3 & 1 & 7 \\
1 & 2 & 1 & -1 & 2 & 0 & 2 & 1 \\
3 & -2 & 9 & 0 & 2 & -3 & 9 & 0 \\
\end{bmatrix}
\]
Representing Banded Matrices

• The upper diagonals have leading zeros.
• Lower diagonals have trailing zeros.
Solving Banded Matrix Equations

• To solve a set of equations with a banded coefficient matrix we use the `scipy.linalg.solve_banded()` function.

• The format for this function is
  ```python
  slin.solve_banded((l, u), cm, rhs)
  ```

• `(l, u)` is a tuple where `l` is the number of nonzero lower diagonals, and `u` is the number of nonzero upper diagonals.

• `cm` is the coefficient matrix in banded form, and `rhs` is the right-hand side vector.
In-class Exercise

- Solve the set of matrix equations below using `solve_banded()`.

\[
\begin{pmatrix}
1 & -5 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\
3 & 2 & -3 & 5 & 0 & 0 & 0 & 0 & 0 \\
0 & -2 & 1 & 5 & 9 & 0 & 0 & 0 & 0 \\
0 & 0 & 9 & -1 & 5 & 4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & -3 & -2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 2 & 0 & 1 & -6 \\
0 & 0 & 0 & 0 & 0 & 0 & -3 & 2 & 7 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 9 & 1 \\
\end{pmatrix}
\begin{pmatrix}
a \\
b \\
c \\
d \\
e \\
f \\
g \\
h \\
\end{pmatrix}
=
\begin{pmatrix}
5 \\
3 \\
-3 \\
2 \\
0 \\
7 \\
8 \\
1 \\
\end{pmatrix}
\]
In-class Results

\[
\begin{align*}
 a &= 200.639937 \\
 b &= -25.491352 \\
 c &= -107.698899 \\
 d &= -174.206761 \\
 e &= 102.750000 \\
 f &= 70.833333 \\
 g &= -3.500000 \\
 h &= 32.500000
\end{align*}
\]